Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–1 of 1 results
Advanced filters: Author: Christophe Grojean Clear advanced filters
  • Machine learning methods have proved powerful in particle physics, but without interpretability there is no guarantee the outcome of a learning algorithm is correct or robust. Christophe Grojean, Ayan Paul, Zhuoni Qian and Inga Strümke give an overview of how to introduce interpretability to methods commonly used in particle physics.

    • Christophe Grojean
    • Ayan Paul
    • Inga Strümke
    Comments & Opinion
    Nature Reviews Physics
    Volume: 4, P: 284-286