Filter By:

Journal Check one or more journals to show results from those journals only.
Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–11 of 11 results
Advanced filters: Author: Elise A. Feingold Clear advanced filters
  • The Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications and replication domains throughout the mouse genome in diverse cell and tissue types; these data were compared with those from human to confirm substantial conservation in the newly annotated potential functional sequences and to reveal pronounced divergence of other sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization.

    • Feng Yue
    • Yong Cheng
    • Bing Ren
    ResearchOpen Access
    Nature
    Volume: 515, P: 355-364
  • The authors summarize the history of the ENCODE Project, the achievements of ENCODE 1 and ENCODE 2, and how the new data generated and analysed in ENCODE 3 complement the previous phases.

    • Federico Abascal
    • Reyes Acosta
    • Richard M. Myers
    Reviews
    Nature
    Volume: 583, P: 693-698
  • The authors summarize the data produced by phase III of the Encyclopedia of DNA Elements (ENCODE) project, a resource for better understanding of the human and mouse genomes.

    • Federico Abascal
    • Reyes Acosta
    • Zhiping Weng
    ResearchOpen Access
    Nature
    Volume: 583, P: 699-710
  • This overview of the ENCODE project outlines the data accumulated so far, revealing that 80% of the human genome now has at least one biochemical function assigned to it; the newly identified functional elements should aid the interpretation of results of genome-wide association studies, as many correspond to sites of association with human disease.

    • Ian Dunham
    • Anshul Kundaje
    • Ewan Birney
    ResearchOpen Access
    Nature
    Volume: 489, P: 57-74
  • Uniform processing and detailed annotation of human, worm and fly RNA-sequencing data reveal ancient, conserved features of the transcriptome, shared co-expression modules (many enriched in developmental genes), matched expression patterns across development and similar extent of non-canonical, non-coding transcription; furthermore, the data are used to create a single, universal model to predict gene-expression levels for all three organisms from chromatin features at the promoter.

    • Mark B. Gerstein
    • Joel Rozowsky
    • Robert Waterston
    ResearchOpen Access
    Nature
    Volume: 512, P: 445-448
  • The next step after sequencing a genome is to figure out how the cell actually uses it as an instruction manual. A large international consortium has examined 1% of the genome for what part is transcribed, where proteins are bound, what the chromatin structure looks like, and how the sequence compares to that of other organisms.

    • Ewan Birney
    • John A. Stamatoyannopoulos
    • Pieter J. de Jong
    Research
    Nature
    Volume: 447, P: 799-816
  • A map of genome-wide binding locations of 165 human, 93 worm and 52 fly transcription-regulatory factors (almost 50% presented for the first time) from diverse cell types, developmental stages, or conditions reveals that gene-regulatory properties previously observed for individual factors may be general principles of metazoan regulation that are well preserved.

    • Alan P. Boyle
    • Carlos L. Araya
    • Michael Snyder
    ResearchOpen Access
    Nature
    Volume: 512, P: 453-456
  • A large collection of new modENCODE and ENCODE genome-wide chromatin data sets from cell lines and developmental stages in worm, fly and human are analysed; this reveals many conserved features of chromatin organization among the three organisms, as well as notable differences in the composition and locations of repressive chromatin.

    • Joshua W. K. Ho
    • Youngsook L. Jung
    • Peter J. Park
    ResearchOpen Access
    Nature
    Volume: 512, P: 449-452