Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–5 of 5 results
Advanced filters: Author: H. Adrian Bunzel Clear advanced filters
  • Computationally designed enzymes can be substantially improved by directed evolution. Now, it has been shown that evolution can introduce a dynamic network that selectively tightens the transition-state ensemble, giving rise to a negative activation heat capacity. Targeting such transition state conformational dynamics may expedite de novo enzyme creation.

    • H. Adrian Bunzel
    • J. L. Ross Anderson
    • Adrian J. Mulholland
    Research
    Nature Chemistry
    Volume: 13, P: 1017-1022
  • The reasons for epistasis, wherein mutations interact non-additively, are often not fully understood. Now it is found that shifting the rate-limiting step from substrate binding to the chemical reaction step during the directed evolution of β-lactamase correlates with epistasis.

    • Christopher Fröhlich
    • H. Adrian Bunzel
    • Nobuhiko Tokuriki
    ResearchOpen Access
    Nature Catalysis
    Volume: 7, P: 499-509
  • Evolution separates complex modern enzymes from their hypothetical simpler early ancestors, which raises the question of how unevolved sequences can develop new functions. Here a library of non-natural protein sequences was subjected to ultrahigh-throughput screens in microfluidic droplets, leading to the isolation of a phosphodiesterase enzyme capable of hydrolysing the biological second messenger, cyclic AMP.

    • J. David Schnettler
    • Michael S. Wang
    • Michael H. Hecht
    ResearchOpen Access
    Nature Chemistry
    Volume: 16, P: 1200-1208
  • A de novo designed zinc-binding protein has been converted into a highly active, stereoselective catalyst for a hetero-Diels–Alder reaction. Design and directed evolution were used to effectively harness Lewis acid catalysis and create an enzyme more proficient than other reported Diels–Alderases.

    • Sophie Basler
    • Sabine Studer
    • Donald Hilvert
    Research
    Nature Chemistry
    Volume: 13, P: 231-235