The performance of organic optoelectronic materials is strongly affected by the three-dimensional (3D) alignment of π-electronic systems. This focus review describes several methods for aligning π-electronic systems to achieve various functionalities in both solution and the solid phase. Cyclic oligomers, acting as tethering units, can facilitate precise design of the nanoarchitecture of π-electronic systems in diluted solutions. In the solid state, charged π-electronic systems exhibit nanoarchitectures based on electrostatic interactions. These methods for controlling the arrangements of π-electronic systems can produce fascinating molecular systems.