Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–19 of 19 results
Advanced filters: Author: Jake Burton Clear advanced filters
  • An analysis of 24,202 critical cases of COVID-19 identifies potentially druggable targets in inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).

    • Erola Pairo-Castineira
    • Konrad Rawlik
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 617, P: 764-768
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • A case–control study investigating the causes of recent cases of acute hepatitis of unknown aetiology in 32 children identifies an association between adeno-associated virus infection and host genetics in disease susceptibility.

    • Antonia Ho
    • Richard Orton
    • Emma C. Thomson
    Research
    Nature
    Volume: 617, P: 555-563
  • A genome-wide association study of critically ill patients with COVID-19 identifies genetic signals that relate to important host antiviral defence mechanisms and mediators of inflammatory organ damage that may be targeted by repurposing drug treatments.

    • Erola Pairo-Castineira
    • Sara Clohisey
    • J. Kenneth Baillie
    Research
    Nature
    Volume: 591, P: 92-98
  • Acne vulgaris is a chronic inflammation of the skin, the genetic basis of which is incompletely understood. Here, Petridis et al. perform GWAS and meta-analysis for acne in 26,722 individuals and identify 12 novel risk loci that implicate structure and maintenance of the skin in severe acne risk.

    • Christos Petridis
    • Alexander A. Navarini
    • Michael A. Simpson
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-8
  • Peter Donnelly and colleagues report fine mapping of 14 susceptibility loci in 8,000 cases and controls for type 2 diabetes, coronary artery disease and Graves' disease. They apply a new Bayesian method for analysis of fine-mapping data sets, using this to define sets of SNPs likely to contain causal disease-associated variants.

    • Julian B Maller
    • Gilean McVean
    • Peter Donnelly
    Research
    Nature Genetics
    Volume: 44, P: 1294-1301
  • The generation of primitive macrophages remains a poorly understood process in humans. Here, the authors identify placental erythro-myeloid progenitors that give rise to foetal macrophages in the early human placenta and demonstrate that epigenetic silencing of the class II transactivator leads to downregulation of HLA-DR in these cells.

    • Jake R. Thomas
    • Anna Appios
    • Naomi McGovern
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-16
  • Copy number variants (CNVs) account for a major proportion of human genetic diversity and may contribute to genetic susceptibility to disease. Here, a large, genome-wide study of association between common CNVs and eight common human diseases is presented. The study provides a wealth of technical insights that will inform future study design and analysis. The results also indicate that common CNVs that can be 'typed' on existing platforms are unlikely to contribute much to the genetic basis of common diseases.

    • Nick Craddock
    • Matthew E. Hurles
    • Peter Donnelly
    Research
    Nature
    Volume: 464, P: 713-720
  • 1000 Genomes imputation can increase the power of genome-wide association studies to detect genetic variants associated with human traits and diseases. Here, the authors develop a method to integrate and analyse low-coverage sequence data and SNP array data, and show that it improves imputation performance.

    • Olivier Delaneau
    • Jonathan Marchini
    • Leena Peltonenz
    Research
    Nature Communications
    Volume: 5, P: 1-9
  • This report from the 1000 Genomes Project describes the genomes of 1,092 individuals from 14 human populations, providing a resource for common and low-frequency variant analysis in individuals from diverse populations; hundreds of rare non-coding variants at conserved sites, such as motif-disrupting changes in transcription-factor-binding sites, can be found in each individual.

    • Gil A. McVean
    • David M. Altshuler (Co-Chair)
    • Gil A. McVean
    ResearchOpen Access
    Nature
    Volume: 491, P: 56-65
  • Results for the final phase of the 1000 Genomes Project are presented including whole-genome sequencing, targeted exome sequencing, and genotyping on high-density SNP arrays for 2,504 individuals across 26 populations, providing a global reference data set to support biomedical genetics.

    • Adam Auton
    • Gonçalo R. Abecasis
    • Gonçalo R. Abecasis
    ResearchOpen Access
    Nature
    Volume: 526, P: 68-74
  • Current clinical practice is organized according to tissue or organ of origin of tumors. Now, The Cancer Genome Atlas (TCGA) Research Network has started to identify genomic and other molecular commonalities among a dozen different types of cancer. Emerging similarities and contrasts will form the basis for targeted therapies of the future and for repurposing existing therapies by molecular rather than histological similarities of the diseases.

    • Kyle Chang
    • Chad J Creighton
    • Joshua M Stuart
    Comments & OpinionOpen Access
    Nature Genetics
    Volume: 45, P: 1113-1120