Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 97 results
Advanced filters: Author: Joel Singer Clear advanced filters
    • William H. Dantzler
    • Larry R. Squire
    • David Johnson
    Correspondence
    Nature
    Volume: 369, P: 9
  • Genomic analyses applied to 14 childhood- and adult-onset psychiatric disorders identifies five underlying genomic factors that explain the majority of the genetic variance of the individual disorders.

    • Andrew D. Grotzinger
    • Josefin Werme
    • Jordan W. Smoller
    ResearchOpen Access
    Nature
    Volume: 649, P: 406-415
  • Retron-Sen2 of Salmonella Typhimurium encodes a toxin and a reverse transcriptase, which, together with the Sen2 multi-copy single-stranded DNA synthesized by the reverse transcriptase make up a tripartite toxin–antitoxin system that functions in anti-phage defence.

    • Jacob Bobonis
    • Karin Mitosch
    • Athanasios Typas
    Research
    Nature
    Volume: 609, P: 144-150
  • Oxidative catalytic depolymerization of polystyrene (PS) can produce benzoic acid, but the annual consumption of benzoic acid is ~40 times lower than PS, so benzoic acid should be converted to higher-volume chemicals for the process to be viable. Here, the authors report a hybrid chemical and biological process that uses PS as feedstock for production of adipic acid, a high-volume co-monomer for nylon 6,6, via benzoic acid.

    • Hyunjin Moon
    • Jason S. DesVeaux
    • Gregg T. Beckham
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-14
  • The Sc2.0 project involved synthesis and debugging of 16 chromosomes, and a tRNA neochromosome. Here the authors descript the SynXVI project, accompanied by an analysis of how similar projects could operate with hindsight and newly available technologies, and lessons learned from Sc2.0.

    • Hugh D. Goold
    • Heinrich Kroukamp
    • Isak S. Pretorius
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-14
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Electrospray deposition is a promising technique for depositing functional coatings at the micro-/nano-scale. Here, the authors establish the necessary conditions for high efficiency electrospray deposition of small targets, establishing promise as an alternative to other conformal coating methods.

    • Sarah H. Park
    • Lin Lei
    • Jonathan P. Singer
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-9
  • A strategy for inferring phase for rare variant pairs is applied to exome sequencing data for 125,748 individuals from the Genome Aggregation Database (gnomAD). This resource will aid interpretation of rare co-occurring variants in the context of recessive disease.

    • Michael H. Guo
    • Laurent C. Francioli
    • Kaitlin E. Samocha
    Research
    Nature Genetics
    Volume: 56, P: 152-161
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The next step after sequencing a genome is to figure out how the cell actually uses it as an instruction manual. A large international consortium has examined 1% of the genome for what part is transcribed, where proteins are bound, what the chromatin structure looks like, and how the sequence compares to that of other organisms.

    • Ewan Birney
    • John A. Stamatoyannopoulos
    • Pieter J. de Jong
    Research
    Nature
    Volume: 447, P: 799-816
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • An integrated transcriptome, genome, methylome and proteome analysis of over 200 lung adenocarcinomas reveals high rates of somatic mutations, 18 statistically significantly mutated genes including RIT1 and MGA, splicing changes, and alterations in MAPK and PI(3)K pathway activity.

    • Eric A. Collisson
    • Joshua D. Campbell
    • Ming-Sound Tsao
    ResearchOpen Access
    Nature
    Volume: 511, P: 543-550
  • Apicomplexan parasites share complex cell pellicular structures that isolates the cytosol from most of the plasma membrane. Koreny et al show that, as an early adaptation to this barrier, dedicated stable endocytic structures occur at select sites in these cells. In Toxoplasma, plasma membrane homeostasis is particularly dependent on endocytosis.

    • Ludek Koreny
    • Brandon N. Mercado-Saavedra
    • Ross F. Waller
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-19
  • Community pharmacists are accessible healthcare providers with expertise in medication management. Here the authors show that a low-carbohydrate, low-energy diet implemented by community pharmacists reduced diabetes medication use and improved glucose control in people with type 2 diabetes.

    • Cody Durrer
    • Sean McKelvey
    • Jonathan P. Little
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-8
  • The three N-terminal zinc fingers of transcription factor IIIA bind in the DNA major groove. Substantial packing interfaces are formed between adjacent fingers, the linkers lose their intrinsic flexibility upon DNA binding, and several lysine side chains implicated in DNA recognition are dynamically disordered.

    • Mark P. Foster
    • Deborah S. Wuttke
    • Peter E. Wright
    Correspondence
    Nature Structural Biology
    Volume: 4, P: 605-608
  • Bacteriophages (phages) are viruses that kill bacteria, with potential as antibacterial agents in industrial settings, agriculture, and human health. Here, we identified two phages, PIN1 and PIN2, that can kill clinical isolates of the human pathogen Klebsiella pneumoniae. The phages are highly stable; PIN2 in particular resisted multiple freeze-thaw cycles over 12 months without loss of activity. PIN1 and PIN2 are related to flagellotropic phages, an idiosyncratic group of viruses that bind to bacterial flagellae, but K. pneumoniae is an immotile pathogen that does not have flagellae. Genetic mosaicism is observed, wherein the long, flexible tail fiber of the flagellotropic phages has been substituted by a more compact tail fiber that binds the Klebsiella host through cell-surface capsular polysaccharide and lipopolysaccharide. PIN1 and PIN2 belong to the Yonseivirus group of phages, with initial analyses across the group suggesting further recent diversification in the tail-fiber cassette in the Yonseivirus genomes.

    • Afif Jati
    • Yan Li
    • Trevor Lithgow
    ResearchOpen Access
    npj Viruses
    Volume: 3, P: 1-13
  • One way of discovering genes with key roles in cancer development is to identify genomic regions that are frequently altered in human cancers. Here, high-resolution analyses of somatic copy-number alterations (SCNAs) in numerous cancer specimens provide an overview of regions of focal SCNA that are altered at significant frequency across several cancer types. An oncogenic function is also found for the anti-apoptosis genes MCL1 and BCL2L1, which reside in amplified genome regions in many cancers.

    • Rameen Beroukhim
    • Craig H. Mermel
    • Matthew Meyerson
    Research
    Nature
    Volume: 463, P: 899-905
  • Screening pairwise combinations of antibiotics and other drugs against three bacterial pathogens reveals that antagonistic and synergistic drug–drug interactions are specific to microbial species and strains.

    • Ana Rita Brochado
    • Anja Telzerow
    • Athanasios Typas
    Research
    Nature
    Volume: 559, P: 259-263
  • Chronic infection with SARS-CoV-2 leads to the emergence of viral variants that show reduced susceptibility to neutralizing antibodies in an immunosuppressed individual treated with convalescent plasma.

    • Steven A. Kemp
    • Dami A. Collier
    • Ravindra K. Gupta
    Research
    Nature
    Volume: 592, P: 277-282
  • Post-international travel quarantine has been widely implemented to mitigate SARS-CoV-2 transmission, but the impacts of such policies are unclear. Here, the authors used linked genomic and contact tracing data to assess the impacts of a 14-day quarantine on return to England in summer 2020.

    • Dinesh Aggarwal
    • Andrew J. Page
    • Ewan M. Harrison
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-13
  • Sera from vaccinated individuals and some monoclonal antibodies show a modest reduction in neutralizing activity against the B.1.1.7 variant of SARS-CoV-2; but the E484K substitution leads to a considerable loss of neutralizing activity.

    • Dami A. Collier
    • Anna De Marco
    • Ravindra K. Gupta
    Research
    Nature
    Volume: 593, P: 136-141