Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 237 results
Advanced filters: Author: Ken Tan Clear advanced filters
  • Nucleic acid aptamers have emerged as promising alternatives to antibodies. Here, we show that incorporating unnatural bases enhances binding affinity by stabilizing the aptamer conformation and enabling specific engagement with hydrophobic pockets— acting like both armor and sword.

    • Kazuhiro Sawada
    • Michiko Kimoto
    • Osamu Nureki
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-14
  • Theoretical and experimental analysis of the effect of grain shape in bed load sediment transport is performed and a shape-corrected sediment transport law that provides greater accuracy in predictions is proposed.

    • Eric Deal
    • Jeremy G. Venditti
    • J. Taylor Perron
    Research
    Nature
    Volume: 613, P: 298-302
  • As pressure mounts globally on drug pricing and development cost continues to rise, clinicians and translational scientists in biotech, academia and biopharma companies are re-evaluating when, where and how to launch early clinical programs. These initial patient data become critical to de-risk development programs and allow developers to deploy their limited time and resources on the most promising drugs. We evaluate four fundamental shifts in drug development that appear to be unfolding and may well become critical to future global biopharma success: use of large-scale high quality cohort studies, sponsor-driven investigator-initiated trials, the integration of affordable artificial intelligence with extensive high quality data registries, and China’s focus on precision medicine. —

    • Lingshi Tan
    • Ken Song
    • Bai Lu
    Comments & Opinion
    Nature Biotechnology
    P: 1-4
  •  A bifunctional iminophosphorane-catalysed, stereo-controlled deconjugation for the synthesis of highly enantioenriched alkylidenecyclopropanes is described, alongside computational studies elucidating the mechanistic pathway and origins of diastereoselectivity and enantioselectivity.

    • Jonathan C. Golec
    • Dong-Hang Tan
    • Darren J. Dixon
    ResearchOpen Access
    Nature
    Volume: 645, P: 932-938
  • Observations of a luminous quasar from the high-resolution spectrometer Resolve aboard XRISM revealed highly inhomogeneous wind structure outflowing from a supermassive black hole, which probably consists of up to a million clumps.

    • Marc Audard
    • Hisamitsu Awaki
    • Yerong Xu
    Research
    Nature
    Volume: 641, P: 1132-1136
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • A meta-analysis of genome-wide association studies of type 2 diabetes (T2D) identifies more than 600 T2D-associated loci; integrating physiological trait and single-cell chromatin accessibility data at these loci sheds light on heterogeneity within the T2D phenotype.

    • Ken Suzuki
    • Konstantinos Hatzikotoulas
    • Eleftheria Zeggini
    ResearchOpen Access
    Nature
    Volume: 627, P: 347-357
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whilst neutron scattering is a powerful tool for studying spin fluctuations in materials, its availability is limited to large-scale user facilities. Here, the authors demonstrate how the pumping of pure spin currents can be used as a desktop probe to detect an antiferromagnetic transition.

    • Zhiyong Qiu
    • Jia Li
    • Eiji Saitoh
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-6
  • A combination of AFM-based AM-FM and nDMA methods evidences the effect of the curing temperature on the structural heterogeneities in epoxy networks: a lower pre-curing temperature provides a less heterogeneous network, which in turn can control the thermal and mechanical properties of resultant epoxy resins.

    • Hung K. Nguyen
    • Atsuomi Shundo
    • Ken Nakajima
    ResearchOpen Access
    Polymer Journal
    Volume: 57, P: 367-375
  • Crohn’s disease (CD) is a complex disease associated with immune dysregulation. Here the authors use multimodal data to identify and characterize an epithelial cell population, termed ‘LND’ cells, in both terminal ileum and ascending colon, with LND interacting locally with immune cells and potentially contributing to CD pathology.

    • Jia Li
    • Alan J. Simmons
    • Qi Liu
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-19
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • There are no vaccines or antivirals available against enterovirus D68. Here, the authors report Jun6504 as a 2C inhibitor and show that it provides broad-spectrum antiviral activity against EV-D68, EV-A71, and CVB3 and potent antiviral efficacy in a neonatal neurological mouse model of EV-D68 infection.

    • Kan Li
    • Michael J. Rudy
    • Jun Wang
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-18
  • A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets.

    • Ji Chen
    • Cassandra N. Spracklen
    • Cornelia van Duijn
    Research
    Nature Genetics
    Volume: 53, P: 840-860
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Transverse thermeoelectrics can simplify devices as the electric field and heat gradient are perpendicular, but the power output is much less than in standard devices. Here, by forming a closed circuit of thermoelectric and magnetic materials, a much larger transverse thermopower is generated.

    • Weinan Zhou
    • Kaoru Yamamoto
    • Yuya Sakuraba
    Research
    Nature Materials
    Volume: 20, P: 463-467
  • The transcription factor CREM is a pivotal regulator of NK cell function, making CREM a valuable target to increase the efficacy of anticancer immunotherapies based on this cell population and chimeric antigen receptors.

    • Hind Rafei
    • Rafet Basar
    • Katayoun Rezvani
    ResearchOpen Access
    Nature
    Volume: 643, P: 1076-1086
  • Geospatial estimates of the prevalence of anemia in women of reproductive age across 82 low-income and middle-income countries reveals considerable heterogeneity and inequality at national and subnational levels, with few countries on track to meet the WHO Global Nutrition Targets by 2030.

    • Damaris Kinyoki
    • Aaron E. Osgood-Zimmerman
    • Simon I. Hay
    ResearchOpen Access
    Nature Medicine
    Volume: 27, P: 1761-1782
  • Energy metabolism and ATP levels are controlled by an interlocking network of pathways. Here, the authors apply a genome-wide CRISPR screen to define genes that increase or decrease ATP levels to define the “ATPome”, a map of pathways that contribute to cellular ATP regulation.

    • Neal K. Bennett
    • Mai K. Nguyen
    • Ken Nakamura
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • Tailored to provide diabetes management recommendations from large training and validation datasets, an artificial intelligence system integrating language and computer vision capabilities is shown to improve self-management of patients in a prospective implementation study.

    • Jiajia Li
    • Zhouyu Guan
    • Tien Yin Wong
    ResearchOpen Access
    Nature Medicine
    Volume: 30, P: 2886-2896
  • Proton migration in the acetylene cation is commonly used as a model to study isomerisation dynamics. Here, the authors use X-ray pump-probe experiments to study this process, and show that isomerization occurs significantly faster than expected—within the first 12 femtoseconds following core ionization.

    • Chelsea E. Liekhus-Schmaltz
    • Ian Tenney
    • Vladimir S. Petrovic
    Research
    Nature Communications
    Volume: 6, P: 1-7