Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–3 of 3 results
Advanced filters: Author: Laura Ascherl Clear advanced filters
  • Two-dimensional covalent organic frameworks (2D COFs) enable the construction of bespoke functional materials, but designing dynamic 2D COFs is challenging. Now it has been shown that perylene-diimide-based COFs can open and close their pores upon uptake or removal of guests, while fully retaining their crystalline long-range order. Moreover, the variable COF geometry enables stimuli-responsive optoelectronic properties.

    • Florian Auras
    • Laura Ascherl
    • Thomas Bein
    Research
    Nature Chemistry
    Volume: 16, P: 1373-1380
  • Covalent organic frameworks (COFs) find increasing application as sensor material, but fast switching solvatochromism was not realized. Here the authors demonstrate that combination of electron-rich and -deficient building blocks leads to COFs which fast and reversibly change of their electronic structure depending on the surrounding atmosphere.

    • Laura Ascherl
    • Emrys W. Evans
    • Florian Auras
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-8
  • Covalent organic frameworks (COFs) are attractive multifunctional porous materials that can be generated with atomic precision. However, endowing them with long-range order—desirable for applications—has remained challenging. Now, propeller-shaped building units have been used that allow consecutive layers to lock in position, resulting in highly crystalline COFs.

    • Laura Ascherl
    • Torben Sick
    • Thomas Bein
    Research
    Nature Chemistry
    Volume: 8, P: 310-316