Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–3 of 3 results
Advanced filters: Author: Laurent-C. Duda Clear advanced filters
  • Alkali-metal-rich compositions (for example, Li[LixM1–x]O2) are promising battery cathode materials that exhibit oxygen redox, which provides additional charge capacity. It is thought to occur in compounds containing alkali ions in the transition metal layers and featuring Li+–O(2p)–Li+ interactions; however, now it is observed in Na2/3[Mg0.28Mn0.72]O2, in which Mg2+ ions are present in the transition metal layer.

    • Urmimala Maitra
    • Robert A. House
    • Peter G. Bruce
    Research
    Nature Chemistry
    Volume: 10, P: 288-295
  • The energy that can be stored in lithium-ion batteries is typically limited by the redox chemistry of the transition metals within the cathodes. Now it is shown that for Li1.2[Ni2+0.13Co3+0.13Mn4+0.54]O2, a 3d-transition-metal oxide that breaks this limit, Li-ion extraction is charge compensated not just by transition-metal oxidation but also through the generation of localized electron-holes on oxygen.

    • Kun Luo
    • Matthew R. Roberts
    • Peter G. Bruce
    Research
    Nature Chemistry
    Volume: 8, P: 684-691
  • Cathode materials for sodium ion batteries generally maintain electroneutrality during sodiation processes through redox reactions of transition metals. Here the authors look at the role of oxygen in charge-compensation in magnesium-doped cathodes to better understand capacity limitations.

    • Le Anh Ma
    • Felix Massel
    • Reza Younesi
    ResearchOpen Access
    Communications Chemistry
    Volume: 2, P: 1-9