Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–7 of 7 results
Advanced filters: Author: Michael Thewalt Clear advanced filters
  • Two types of on-chip silicon device utilizing silicon T centres are developed: an O-band light-emitting diode and an electrically triggered single-photon source. Further, a new method of spin initialization with electrical excitation is demonstrated.

    • Michael Dobinson
    • Camille Bowness
    • Daniel B. Higginbottom
    Research
    Nature Photonics
    Volume: 19, P: 1132-1137
  • The coherence lifetime of a material system to be used in quantum information protocols has to be long enough for several quantum operations to occur before the system loses its quantum coherence. The spins of impurities in silicon have been shown to have coherence lifetimes up to tens of milliseconds, but now all records are beaten with those in high-purity silicon reaching a few seconds.

    • Alexei M. Tyryshkin
    • Shinichi Tojo
    • S. A. Lyon
    Research
    Nature Materials
    Volume: 11, P: 143-147
  • For solid-state qubits, the material environment hosts sources of errors that vary in time and space. This systematic analysis of errors affecting high-fidelity two-qubit gates in silicon can inform the design of large-scale quantum computers.

    • Tuomo Tanttu
    • Wee Han Lim
    • Andrew S. Dzurak
    ResearchOpen Access
    Nature Physics
    Volume: 20, P: 1804-1809
  • Individually addressable ‘T centre’ photon-spin qubits are integrated in silicon photonic structures and their spin-dependent telecommunications-band optical transitions characterized, creating opportunities to construct silicon-integrated, telecommunications-band quantum information networks.

    • Daniel B. Higginbottom
    • Alexander T. K. Kurkjian
    • Stephanie Simmons
    Research
    Nature
    Volume: 607, P: 266-270
  • Understanding the microscopic variability of CMOS spin qubits is crucial for developing scalable quantum processors. Here the authors report a combined experimental and numerical study of the effect of interface roughness on variability of quantum dot spin qubits formed at the Si/SiO2 interface.

    • Jesús D. Cifuentes
    • Tuomo Tanttu
    • Andre Saraiva
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-14
  • High-performance all-electrical control is a prerequisite for scalable silicon quantum computing. The switchable interaction between spins and orbital motion of electrons in silicon quantum dots now enables the electrical control of a spin qubit with high fidelity and speed, without the need for integrating a micromagnet.

    • Will Gilbert
    • Tuomo Tanttu
    • Andrew S. Dzurak
    Research
    Nature Nanotechnology
    Volume: 18, P: 131-136