Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–8 of 8 results
Advanced filters: Author: N. Samkharadze Clear advanced filters
  • Conveyor-mode spin shuttling using a two-tone travelling-wave potential demonstrates an order of magnitude better spin coherence than bucket-brigade shuttling, achieving spin shuttling over 10 μm in under 200 ns with 99.5% fidelity in an isotopically purified Si/SiGe heterostructure.

    • Maxim De Smet
    • Yuta Matsumoto
    • Lieven M. K. Vandersypen
    ResearchOpen Access
    Nature Nanotechnology
    Volume: 20, P: 866-872
  • Spin qubits in Si/SiGe quantum dots suffer from variability in the valley splitting which will hinder device scalability. Here, by using 3D atomic characterization, the authors explain this variability by random Si and Ge atomic fluctuations and propose a strategy to statistically enhance the valley splitting

    • Brian Paquelet Wuetz
    • Merritt P. Losert
    • Giordano Scappucci
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-8
  • Two-dimensional electron systems at half-filled Landau levels can form unusual electronic states such as paired fractional quantum Hall and nematic phases. Here the authors observe the transition between these two phases at filling factors 5/2 and 7/2 and demonstrate the important influence of interactions.

    • K. A. Schreiber
    • N. Samkharadze
    • G. A. Csáthy
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-7
  • Silicon spin qubits can be fabricated in a 300 mm semiconductor manufacturing facility using all-optical lithography and fully industrial processing.

    • A. M. J. Zwerver
    • T. Krähenmann
    • J. S. Clarke
    ResearchOpen Access
    Nature Electronics
    Volume: 5, P: 184-190