Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–8 of 8 results
Advanced filters: Author: Simon Trebst Clear advanced filters
  • Quantum many-body systems can show an elusive form of order known as topological order. Theoretical work now unifies several microscopic models whereby topological phases have been found, and predicts quantum phase transitions that are driven by quantum fluctuations of the topology.

    • Charlotte Gils
    • Simon Trebst
    • Zhenghan Wang
    Research
    Nature Physics
    Volume: 5, P: 834-839
  • The Kitaev model is intensively studied as an exactly-solvable starting point for theoretical studies of quantum spin liquid states. Hickey and Trebst show that magnetic fields can destabilize the well-known gapped Kitaev spin liquid and induce a new gapless spin liquid, with a distinct gauge structure and neutral Fermi surface.

    • Ciarán Hickey
    • Simon Trebst
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-10
  • Measurements combined with post-processing of their outcomes can be used to prepare ordered quantum states. It has been shown that they can drive a Nishimori phase transition into a disordered state even in the presence of quantum errors.

    • Edward H. Chen
    • Guo-Yi Zhu
    • Abhinav Kandala
    Research
    Nature Physics
    Volume: 21, P: 161-167
  • Spin–orbit entangled local moments in the iridate material Na2IrO3 are subject to strong exchange frustration, driving the system towards a spin-liquid phase with emergent fractional excitations.

    • Philipp Gegenwart
    • Simon Trebst
    News & Views
    Nature Physics
    Volume: 11, P: 444-445
  • Superconducting quantum processors need to balance intentional disorder (to protect qubits) and nonlinear resonator coupling (to manipulate qubits), while avoiding chaotic instabilities. Berke et al. use the techniques of many-body localization theory to study the stability of current platforms against quantum chaos.

    • Christoph Berke
    • Evangelos Varvelis
    • David P. DiVincenzo
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-10
  • Twisted van der Waals systems are known to host flat electronic bands, originating from moire potential. Here, the authors predict from purely geometric considerations a new type of nearly dispersionless bands in twisted bilayer MoS2, resulting from destructive interference between effective lattice hopping matrix elements.

    • Lede Xian
    • Martin Claassen
    • Angel Rubio
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-9