Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–7 of 7 results
Advanced filters: Author: Steve Habegger Clear advanced filters
  • Typical quantum error correcting codes assign fixed roles to the underlying physical qubits. Now the performance benefits of alternative, dynamic error correction schemes have been demonstrated on a superconducting quantum processor.

    • Alec Eickbusch
    • Matt McEwen
    • Alexis Morvan
    ResearchOpen Access
    Nature Physics
    Volume: 21, P: 1994-2001
  • Experimental measurements of high-order out-of-time-order correlators on a superconducting quantum processor show that these correlators remain highly sensitive to the quantum many-body dynamics in quantum computers at long timescales.

    • Dmitry A. Abanin
    • Rajeev Acharya
    • Nicholas Zobrist
    ResearchOpen Access
    Nature
    Volume: 646, P: 825-830
  • It is hoped that quantum computers may be faster than classical ones at solving optimization problems. Here the authors implement a quantum optimization algorithm over 23 qubits but find more limited performance when an optimization problem structure does not match the underlying hardware.

    • Matthew P. Harrigan
    • Kevin J. Sung
    • Ryan Babbush
    Research
    Nature Physics
    Volume: 17, P: 332-336
  • Quantum supremacy is demonstrated using a programmable superconducting processor known as Sycamore, taking approximately 200 seconds to sample one instance of a quantum circuit a million times, which would take a state-of-the-art supercomputer around ten thousand years to compute.

    • Frank Arute
    • Kunal Arya
    • John M. Martinis
    Research
    Nature
    Volume: 574, P: 505-510
  • Two below-threshold surface code memories on superconducting processors markedly reduce logical error rates, achieving high efficiency and real-time decoding, indicating potential for practical large-scale fault-tolerant quantum algorithms.

    • Rajeev Acharya
    • Dmitry A. Abanin
    • Nicholas Zobrist
    ResearchOpen Access
    Nature
    Volume: 638, P: 920-926
  • The goal of the 1000 Genomes Project is to provide in-depth information on variation in human genome sequences. In the pilot phase reported here, different strategies for genome-wide sequencing, using high-throughput sequencing platforms, were developed and compared. The resulting data set includes more than 95% of the currently accessible variants found in any individual, and can be used to inform association and functional studies.

    • Richard M. Durbin
    • David Altshuler (Co-Chair)
    • Gil A. McVean
    ResearchOpen Access
    Nature
    Volume: 467, P: 1061-1073