Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–8 of 8 results
Advanced filters: Author: V. Zwiller Clear advanced filters
  • An electron and a hole trapped in the same quantum dot couple together to form an exciton. Conventionally the hole involved is a heavy hole. Light-hole excitons are now observed by applying elastic stress to initially unstrained gallium arsenide-based dots. The quasiparticles are identified by their optical emission signature, and could be used in future quantum technologies.

    • Y. H. Huo
    • B. J. Witek
    • O. G. Schmidt
    Research
    Nature Physics
    Volume: 10, P: 46-51
  • The generation of entangled photon pairs is usually a complex process involving optically driven schemes and nonlinear optics. The recent demonstration of an electrically powered light-emitting diode that is capable of this task looks set to greatly simplify experiments in the field of quantum information processing.

    • Val Zwiller
    News & Views
    Nature Photonics
    Volume: 4, P: 508-509
  • A silicon-on-insulator device combining two four-wave-mixing photon-pair sources in an interferometer with a reconfigurable phase shifter is used to create and manipulate non-degenerate or degenerate, path-entangled or path-unentangled photon pairs. A quantum interference visibility of nearly 100% is observed on-chip. This device is a first step towards fully integrated quantum technologies.

    • J. W. Silverstone
    • D. Bonneau
    • M. G. Thompson
    Research
    Nature Photonics
    Volume: 8, P: 104-108
  • Combining semiconductor quantum dots and atomic systems allows the light emitted from a quantum dot to be temporarily stored. Here, scientists describe a hybrid semiconductor-atomic interface that can slow down a single photon emitted from a quantum dot by 15 times its temporal width. The findings are attractive for the implementation of quantum memories and quantum repeaters.

    • N. Akopian
    • L. Wang
    • V. Zwiller
    Research
    Nature Photonics
    Volume: 5, P: 230-233
  • Spontaneous parametric down-conversion, the standard technique for generating entangled photons, is limited by low pair extraction efficiencies at near-unity fidelity. The authors show quantum dots in nanowires efficiently emit an oscillating state with near-unity entanglement fidelity and propose a time-resolved quantum key distribution protocol.

    • Matteo Pennacchietti
    • Brady Cunard
    • Michael E. Reimer
    ResearchOpen Access
    Communications Physics
    Volume: 7, P: 1-7