Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 304 results
Advanced filters: Author: Y. Alex Zhang Clear advanced filters
  • Chen et al. report a tailored self-assembled monolayer to create a localized 2D/3D perovskite heterojunction. This strategy reduces interfacial loss, achieving photovoltages >90% of thermodynamic limit for wide-bandgap cells, and enables perovskite-organic tandem solar cells with efficiency of 27.11%.

    • Mingqian Chen
    • Wenlin Jiang
    • Alex K.-Y. Jen
    ResearchOpen Access
    Nature Communications
    P: 1-11
  • The inter-system crossing induced by selenium may undesirably enhance formation of triplet excitons in non-fullerene acceptors, leading to increased non-radiative losses. Here, the authors introduce achiral N-alkyl substituents, achieving maximum efficiency of 20.4% for ternary organic solar cells.

    • Feng Qi
    • Qian Li
    • Alex K.-Y. Jen
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-10
  • Typical quantum error correcting codes assign fixed roles to the underlying physical qubits. Now the performance benefits of alternative, dynamic error correction schemes have been demonstrated on a superconducting quantum processor.

    • Alec Eickbusch
    • Matt McEwen
    • Alexis Morvan
    ResearchOpen Access
    Nature Physics
    Volume: 21, P: 1994-2001
  • The variability in clinical outcomes of SARS-CoV-2 infection is partly due to deficiencies in production or response to type I interferons (IFN). Here, the authors describe a FIP200-dependent lysosomal degradation pathway, independent of canonical autophagy and type I IFN, that restricts SARS-CoV-2 replication, offering insights into critical COVID-19 pneumonia mechanisms.

    • Lili Hu
    • Renee M. van der Sluis
    • Trine H. Mogensen
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-23
  • Experimental measurements of high-order out-of-time-order correlators on a superconducting quantum processor show that these correlators remain highly sensitive to the quantum many-body dynamics in quantum computers at long timescales.

    • Dmitry A. Abanin
    • Rajeev Acharya
    • Nicholas Zobrist
    ResearchOpen Access
    Nature
    Volume: 646, P: 825-830
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • Analysis of the longest-lived mammal, the bowhead whale, reveals an improved ability to repair DNA breaks, mediated by high levels of cold-inducible RNA-binding protein.   

    • Denis Firsanov
    • Max Zacher
    • Vera Gorbunova
    ResearchOpen Access
    Nature
    Volume: 648, P: 717-725
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Upcycling urine in wastewater for nitrogen and phosphorus production has gained attention, but their low market values hamper the application. Here, the authors develop a yeast platform that mimics osteoblast mechanisms to produce the high-value hydroxyapatite directly from urine.

    • Isaak E. Müller
    • Alex Y. W. Lin
    • Yasuo Yoshikuni
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-13
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • The stabilization of perovskites in both solution and solid phases is critical to the fabrication of solution-processed perovskite solar cells. Here, 4-(trifluoromethyl)phenylhydrazine is introduced to enhance storage stability, achieving consistent high efficiency of 26.0% in stable devices.

    • Guihua Zhang
    • Deng Wang
    • Chun Cheng
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-9
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Whole-genome sequencing, transcriptome-wide association and fine-mapping analyses in over 7,000 individuals with critical COVID-19 are used to identify 16 independent variants that are associated with severe illness in COVID-19.

    • Athanasios Kousathanas
    • Erola Pairo-Castineira
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 607, P: 97-103
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • A genome-wide association meta-analysis study of blood lipid levels in roughly 1.6 million individuals demonstrates the gain of power attained when diverse ancestries are included to improve fine-mapping and polygenic score generation, with gains in locus discovery related to sample size.

    • Sarah E. Graham
    • Shoa L. Clarke
    • Cristen J. Willer
    Research
    Nature
    Volume: 600, P: 675-679
  • Geospatial estimates of the prevalence of anemia in women of reproductive age across 82 low-income and middle-income countries reveals considerable heterogeneity and inequality at national and subnational levels, with few countries on track to meet the WHO Global Nutrition Targets by 2030.

    • Damaris Kinyoki
    • Aaron E. Osgood-Zimmerman
    • Simon I. Hay
    ResearchOpen Access
    Nature Medicine
    Volume: 27, P: 1761-1782
  • A large genome-wide association study of more than 5 million individuals reveals that 12,111 single-nucleotide polymorphisms account for nearly all the heritability of height attributable to common genetic variants.

    • Loïc Yengo
    • Sailaja Vedantam
    • Joel N. Hirschhorn
    ResearchOpen Access
    Nature
    Volume: 610, P: 704-712
  • A millimetre-scale bioresorbable optoelectronic system with an onboard power supply and a wireless, optical control mechanism is developed for general applications in electrotherapy and specific uses in temporary cardiac pacing.

    • Yamin Zhang
    • Eric Rytkin
    • John A. Rogers
    Research
    Nature
    Volume: 640, P: 77-86
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Two below-threshold surface code memories on superconducting processors markedly reduce logical error rates, achieving high efficiency and real-time decoding, indicating potential for practical large-scale fault-tolerant quantum algorithms.

    • Rajeev Acharya
    • Dmitry A. Abanin
    • Nicholas Zobrist
    ResearchOpen Access
    Nature
    Volume: 638, P: 920-926
  • Reference assemblies of great ape sex chromosomes show that Y chromosomes are more variable in size and sequence than X chromosomes and provide a resource for studies on human evolution and conservation genetics of non-human apes.

    • Kateryna D. Makova
    • Brandon D. Pickett
    • Adam M. Phillippy
    ResearchOpen Access
    Nature
    Volume: 630, P: 401-411
  • Cross-linkable co-SAMs improve hole-selective SAM stability, preventing defects and thermal degredation in perovskite solar cells, enabling 26.92% efficiency with high heat durability, and guiding the design of more efficient and durable solar cells.

    • Wenlin Jiang
    • Geping Qu
    • Alex K.-Y. Jen
    Research
    Nature
    Volume: 646, P: 95-101
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Donor exciton delocalization and its impact on photovoltaic performance of organic solar cells remains less explored. Here, the authors found that delocalized excitons are formed in aggregates of the donor polymer D18, and that these delocalized excitons mediate charge generation in solar cells.

    • Kui Jiang
    • Robert J. E. Westbrook
    • Alex K.-Y. Jen
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-11
  • Hyperactivation of Akt promotes tumorigenesis. Here, the authors show that SAV1, a member of Hippo signalling, interacts with Akt to suppress Akt activity and MERTK-mediated Akt phosphorylation relieves this suppression to facilitate Akt oncogenic activity in clear cell renal carcinomas.

    • Yao Jiang
    • Yanqiong Zhang
    • Pengda Liu
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-12
  • Genotype and exome sequencing of 150,000 participants and whole-genome sequencing of 9,950 selected individuals recruited into the Mexico City Prospective Study constitute a valuable, publicly available resource of non-European sequencing data.

    • Andrey Ziyatdinov
    • Jason Torres
    • Roberto Tapia-Conyer
    ResearchOpen Access
    Nature
    Volume: 622, P: 784-793
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • The realization of efficient perovskite/organic tandem solar cells has been challenging due to large voltage deficits and severe non-radiative recombination. Here, the authors introduce sandwiched hole transport configuration for more balanced carrier transport, achieving efficiency of 26.05%.

    • Yidan An
    • Nan Zhang
    • Hin-Lap Yip
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-11
  • Survey data collected across ten low-income and middle-income countries (LMICs) in Asia, Africa and South America compared with surveys from Russia and the United States reveal heterogeneity in vaccine confidence in LMICs, with healthcare providers being trusted sources of information, as well as greater levels of vaccine acceptance in these countries than in Russia and the United States.

    • Julio S. Solís Arce
    • Shana S. Warren
    • Saad B. Omer
    ResearchOpen Access
    Nature Medicine
    Volume: 27, P: 1385-1394
  • The C-terminal domain of the largest subunit of RNA polymerase II (CTD) is phosphorylated and recruits regulators of transcription. Here the authors show that phosphorylated CTD, upon specific binding to transcription regulators, forms distinct condensates from wildtype CTD, impact promoter binding and RNA processing.

    • Qian Zhang
    • Wantae Kim
    • Y. Jessie Zhang
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-18
  • Chronic infection with SARS-CoV-2 leads to the emergence of viral variants that show reduced susceptibility to neutralizing antibodies in an immunosuppressed individual treated with convalescent plasma.

    • Steven A. Kemp
    • Dami A. Collier
    • Ravindra K. Gupta
    Research
    Nature
    Volume: 592, P: 277-282
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13