A general method for assembling patterned interfaces of uniform, flexible mesoporous iron oxide nanopyramid islands is presented. The 3D porous interfaces possess a unique mesostructure that features a large surface area, a large pore size and excellent flexibility. Furthermore, the 3D porous Au–NPI interfaces allow efficient immobilization of cytochrome c and a significant enhancement of localized surface plasmon resonance. More importantly, the ultrasensitive integrated interfaces demonstrate over 1000-fold enhancement of the photocurrent variation on the 3D mesostructures based on the switchable direct electrochemistry cytochrome c. The strategy of interfacial assembly offers new possibilities for the chemical design of patterned mesoporous semiconductors with high flexibility and tailored photocatalytic characteristics.
- Biao Kong
- Debabrata Sikdar
- Dongyuan Zhao