Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 74 results
Advanced filters: Author: Zachary H. Levine Clear advanced filters
  • Radiation and steroid dosing can affect the immune composition of brain metastasis (BM). The authors have designed a pilot study of pre-operative stereotactic radiosurgery with low or high dose of peri-operative dexamethasone for resectable brain metastases, here reporting clinical outcomes and characterization of intratumor TCF1+ CD8+ stem-like T cell immune niches in the brain.

    • Caroline S. Jansen
    • Meghana S. Pagadala
    • Zachary S. Buchwald
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-15
  • Poly(A)-binding protein (PABP) is an RNA binding protein with translation function. Here, Barragán-Iglesias and colleagues devise an RNA mimic that inhibits PABP activity, and show that inhibitors can reduce animal’s pain response in vivo when injected locally.

    • Paulino Barragán-Iglesias
    • Tzu-Fang Lou
    • Zachary T. Campbell
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-17
  • A mathematical framework to estimate the fitness of cancer driver mutations by integrating mutational bias, oncogenicity and immunogenicity finds fundamental trade-offs in cancer evolution.

    • David Hoyos
    • Roberta Zappasodi
    • Benjamin D. Greenbaum
    ResearchOpen Access
    Nature
    Volume: 606, P: 172-179
  • Observations from the Lucy spacecraft of the small main-belt asteroid (152830) Dinkinesh reveals unexpected complexity, with a longitudinal trough and equatorial ridge, as well as the discovery of the first contact binary satellite.

    • Harold F. Levison
    • Simone Marchi
    • Yifan Zhao
    ResearchOpen Access
    Nature
    Volume: 629, P: 1015-1020
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • The goals, resources and design of the NHLBI Trans-Omics for Precision Medicine (TOPMed) programme are described, and analyses of rare variants detected in the first 53,831 samples provide insights into mutational processes and recent human evolutionary history.

    • Daniel Taliun
    • Daniel N. Harris
    • Gonçalo R. Abecasis
    ResearchOpen Access
    Nature
    Volume: 590, P: 290-299
  • In Drosophila, there are extensive physical and functional associations of distant paralogous genes, including co-regulation by shared enhancers and co-transcriptional initiation over distances of nearly 250 kilobases.

    • Michal Levo
    • João Raimundo
    • Michael S. Levine
    Research
    Nature
    Volume: 605, P: 754-760
  • Genome-scale DNA methylation maps over early human embryogenesis and embryonic stem cell derivation provide insights into shared and unique modes of regulation when compared to the mouse model, including relationships to gene expression, transposable element activity, and maternal-specific methylation.

    • Zachary D. Smith
    • Michelle M. Chan
    • Alexander Meissner
    Research
    Nature
    Volume: 511, P: 611-615
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Paul Pharoah and colleagues report the results of a large genome-wide association study of ovarian cancer. They identify new susceptibility loci for different epithelial ovarian cancer histotypes and use integrated analyses of genes and regulatory features at each locus to predict candidate susceptibility genes, including OBFC1.

    • Catherine M Phelan
    • Karoline B Kuchenbaecker
    • Paul D P Pharoah
    Research
    Nature Genetics
    Volume: 49, P: 680-691
  • Deep phenotyping of an ancestrally diverse group of 13,000 individuals in the Human Phenotype Project highlights diversity and variations in lifestyle factors, clinical features and molecular signatures of health and disease.

    • Lee Reicher
    • Smadar Shilo
    • Eran Segal
    Research
    Nature Medicine
    Volume: 31, P: 3191-3203
  • A small-molecule inhibitor of the Mediator-associated kinases CDK8 and CDK19 inhibits growth of acute myeloid leukaemia (AML) cells and induces upregulation of super-enhancer-associated genes with tumour suppressor and lineage-controlling functions; Mediator kinase inhibition therefore represents a promising therapeutic approach for AML.

    • Henry E. Pelish
    • Brian B. Liau
    • Matthew D. Shair
    Research
    Nature
    Volume: 526, P: 273-276
  • Reduced representation bisulphite sequencing is used to generate genome-scale DNA methylation maps in mouse gametes and several stages of early, pre-implantation embryogenesis, allowing a base-pair resolution timeline of the changes in DNA methylation during developmental transitions.

    • Zachary D. Smith
    • Michelle M. Chan
    • Alexander Meissner
    Research
    Nature
    Volume: 484, P: 339-344
  • A combination of gnotobiotic mouse models, transcriptomics, circuit tracing and chemogenetic manipulations identifies neuronal circuits that integrate microbial signals in the gut with regulation of the sympathetic nervous system.

    • Paul A. Muller
    • Marc Schneeberger
    • Daniel Mucida
    Research
    Nature
    Volume: 583, P: 441-446
  • Alex Meissner and colleagues report base pair–resolution methylation maps from donor fibroblasts and nuclear transfer–reconstructed mouse embryos. They compare methylation profiles to that present during normal fertilization and find that specific promoters and repeat elements exhibit differential dynamics.

    • Michelle M Chan
    • Zachary D Smith
    • Alexander Meissner
    Research
    Nature Genetics
    Volume: 44, P: 978-980
  • Analysis of mitochondrial genomes (mtDNA) by using whole-genome sequencing data from 2,658 cancer samples across 38 cancer types identifies hypermutated mtDNA cases, frequent somatic nuclear transfer of mtDNA and high variability of mtDNA copy number in many cancers.

    • Yuan Yuan
    • Young Seok Ju
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 342-352
  • Analysis of whole-genome sequencing data across 2,658 tumors spanning 38 cancer types shows that chromothripsis is pervasive, with a frequency of more than 50% in several cancer types, contributing to oncogene amplification, gene inactivation and cancer genome evolution.

    • Isidro Cortés-Ciriano
    • Jake June-Koo Lee
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 331-341
  • A single-cell transcriptomic atlas of the aging mouse brain reveals coordinated and cell-type-specific aging signatures across multiple cell populations. Catalogs of aging-related genes, pathways and ligand–receptor interactions are reported.

    • Methodios Ximerakis
    • Scott L. Lipnick
    • Lee L. Rubin
    Research
    Nature Neuroscience
    Volume: 22, P: 1696-1708