Abstract
The ability to reprogram adult cells into stem cells has raised hopes for novel therapies for many human diseases. Typical stem cell reprogramming protocols involve expression of a small number of genes in differentiated somatic cells with the c-Myc and Klf4 proto-oncogenes typically included in this mix. We have previously shown that expression of oncogenes leads to DNA replication stress and genomic instability, explaining the high frequency of p53 mutations in human cancers. Consequently, we wondered whether stem cell reprogramming also leads to genomic instability. To test this hypothesis, we examined stem cells induced by a variety of protocols. The first protocol, developed specifically for this study, reprogrammed primary mouse mammary cells into mammary stem cells by expressing c-Myc. Two other previously established protocols reprogrammed mouse embryo fibroblasts into induced pluripotent stem cells by expressing either three genes, Oct4, Sox2 and Klf4, or four genes, OSK plus c-Myc. Comparative genomic hybridization analysis of stem cells derived by these protocols revealed the presence of genomic deletions and amplifications, whose signature was suggestive of oncogene-induced DNA replication stress. The genomic aberrations were to a significant degree dependent on c-Myc expression and their presence could explain why p53 inactivation facilitates stem cell reprogramming.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
Abbreviations
- iPS:
-
induced pluripotent stem
- OSK:
-
Oct4, Sox2, Klf4
- OSKC:
-
Oct4, Sox2, Klf4, c-Myc
- TAM:
-
4-hydroxytamoxifen
- MEF:
-
mouse embryo fibroblast
- CFS:
-
common fragile site
- cGH:
-
comparative genomic hybridization
- CNC:
-
copy number change
- Rora :
-
retinoic acid receptor-related orphan receptor A
- Pde4D :
-
phosphodiesterase 4D
- Ptprg :
-
protein tyrosine phosphatase receptor type G
- Fhit :
-
fragile histidine triad
- Jarid2 :
-
jumonji AT rich interactive domain 2
- Dtnbp1 :
-
dystrobrevin-binding protein 1
- Odz3 :
-
odd Oz/ten-m homolog 3
- Cdh13 :
-
cadherin 13
- Fto :
-
fat mass and obesity associated
- Dock3 :
-
dedicator of cytokinesis3
- Cadm2 :
-
cell adhesion molecule 2
- Lsamp :
-
limbic system-associated membrane protein
- Naaladl2 :
-
N-acetylated alpha-linked acidic dipeptidase-like 2
- Erc2 :
-
ELKS–RAB6-interacting/CAST family member 2
References
Takahashi K, Yamanaka S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663–676.
Okita K, Ichisaka T, Yamanaka S . Generation of germline-competent induced pluripotent stem cells. Nature 2007; 448: 313–317.
Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 2007; 448: 318–324.
Wernig M, Meissner A, Cassady JP, Jaenisch R . c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell 2008; 2: 10–12.
Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 2008; 26: 101–106.
Halazonetis TD, Gorgoulis VG, Bartek J . An oncogene-induced DNA damage model for cancer development. Science 2008; 319: 1352–1355.
Maherali N, Hochedlinger K . Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell 2008; 3: 595–605.
Ellis J, Bruneau BG, Keller G, Lemischka IR, Nagy A, Rossant J et al. Alternative induced pluripotent stem cell characterization criteria for in vitro applications. Cell Stem Cell 2009; 4: 198–199.
Daley GQ, Lensch MW, Jaenisch R, Meissner A, Plath K, Yamanaka S . Broader implications of defining standards for the pluripotency of iPSCs. Cell Stem Cell 2009; 4: 200–201.
Zhao XY, Li W, Lv Z, Liu L, Tong M, Hai T et al. Viable fertile mice generated from fully pluripotent iPS cells derived from adult somatic cells. Stem Cell Rev 2010; 6: 390–397.
Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M et al. Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 2009; 460: 1132–1135.
Kawamura T, Suzuki J, Wang YV, Menendez S, Morera LB, Raya A et al. Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 2009; 460: 1140–1144.
Marion RM, Strati K, Li H, Murga M, Blanco R, Ortega S et al. A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 2009; 460: 1149–1153.
Utikal J, Polo JM, Stadtfeld M, Maherali N, Kulalert W, Walsh RM et al. Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature 2009; 460: 1145–1148.
Hanna J, Saha K, Pando B, van Zon J, Lengner CJ, Creyghton MP et al. Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 2009; 462: 595–601.
Kuerbitz SJ, Plunkett BS, Walsh WV, Kastan MB . Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci USA 1992; 89: 7491–7495.
Sarig R, Rivlin N, Brosh R, Bornstein C, Kamer I, Ezra O et al. Mutant p53 facilitates somatic cell reprogramming and augments the malignant potential of reprogrammed cells. J Exp Med 2010; 207: 2127–2140.
Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 2003; 17: 1253–1270.
Cicalese A, Bonizzi G, Pasi CE, Faretta M, Ronzoni S, Giulini B et al. The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 2009; 138: 1083–1095.
Littlewood TD, Hancock DC, Danielian PS, Parker MG, Evan GI . A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucl Acids Res 1995; 23: 1686–1690.
El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM et al. WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75: 817–825.
Mai S, Fluri M, Siwarski D, Huppi K . Genomic instability in MycER-activated Rat1A-MycER cells. Chrom Res 1996; 4: 365–371.
Ray S, Atkuri KR, Deb-Basu D, Adler AS, Chang HY, Herzenberg LA et al. MYC can induce DNA breaks in vivo and in vitro independent of reactive oxygen species. Cancer Res 2006; 66: 6598–6605.
Zhu Y, McAvoy S, Kuhn R, Smith DI . RORA, a large common fragile site gene, is involved in cellular stress response. Oncogene 2006; 25: 2901–2908.
Bignell GR, Greenman CD, Davies H, Butler AP, Edkins S, Andrews JM et al. Signatures of mutation and selection in the cancer genome. Nature 2010; 463: 893–898.
Assou S, Cerecedo D, Tondeur S, Pantesco V, Hovatta O, Klein B et al. A gene expression signature shared by human mature oocytes and embryonic stem cells. BMC Genomics 2009; 10: 10.
Peng JC, Valouev A, Swigut T, Zhang J, Zhao Y, Sidow A et al. Jarid2/jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. Cell 2009; 139: 1290–1302.
Shen X, Kim W, Fujiwara Y, Simon MD, Liu Y, Mysliwiec MR et al. Jumonji modulates polycomb activity and self-renewal versus differentiation of stem cells. Cell 2009; 139: 1303–1314.
Glover TW, Berger C, Coyle J, Echo B . DNA polymerase alpha inhibition by aphidicolin induces gaps and breaks at common fragile sites in human chromosomes. Hum Genet 1984; 67: 136–142.
Helmrich A, Stout-Weider K, Hermann K, Schrock E, Heiden T . Common fragile sites are conserved features of human and mouse chromosomes and relate to large active genes. Genome Res 2006; 16: 1222–1230.
Smith DI, Zhu Y, McAvoy S, Kuhn R . Common fragile sites, extremely large genes, neural development and cancer. Cancer Lett 2006; 232: 48–57.
Durkin SG, Ragland RL, Arlt MF, Mulle JG, Warren ST, Glover TW . Replication stress induces tumor-like microdeletions in FHIT/FRA3B. Proc Natl Acad Sci USA 2008; 105: 246–251.
Arlt MF, Mulle JG, Schaibley VM, Ragland RL, Durkin SG, Warren ST et al. Replication stress induces genome-wide copy number changes in human cells that resemble polymorphic and pathogenic variants. Am J Hum Genet 2009; 84: 339–350.
Mayshar Y, Ben-David U, Lavon N, Biancotti JC, Yakir B, Clark AT et al. Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell 2010; 7: 521–531.
Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 2009; 324: 797–801.
Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II et al. Correction: human induced pluripotent stem cells free of vector and transgene sequences. Science 2009; 324: 1266.
Chin MH, Mason MJ, Xie W, Volinia S, Singer M, Peterson C et al. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 2009; 5: 111–123.
Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, Morey R et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 2011; 8: 106–118.
Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 2005; 434: 907–913.
Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 2005; 434: 864–870.
Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 2006; 444: 633–637.
Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 2006; 444: 638–642.
Denko NC, Giaccia AJ, Stringer JR, Stambrook PJ . The human Ha-ras oncogene induces genomic instability in murine fibroblasts within one cell cycle. Proc Natl Acad Sci USA 1994; 91: 5124–5128.
Covey JM, D’Incalci M, Tilchen EJ, Zaharko DS, Kohn KW . Differences in DNA damage produced by incorporation of 5-aza-2′-deoxycytidine or 5,6-dihydro-5-azacytidine into DNA of mammalian cells. Cancer Res 1986; 46: 5511–5517.
Boiani M, Kehler J, Scholer HR . Activity of the germline-specific Oct4-GFP transgene in normal and clone mouse embryos. Methods Mol Biol 2004; 254: 1–34.
Lengner CJ, Camargo FD, Hochedlinger K, Welstead GG, Zaidi S, Gokhale S et al. Oct4 expression is not required for mouse somatic stem cell self-renewal. Cell Stem Cell 2007; 1: 403–415.
Sommer CA, Stadtfeld M, Murphy GJ, Hochedlinger K, Kotton DN, Mostoslavsky G . Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells 2009; 27: 543–549.
Takahashi K, Okita K, Nakagawa M, Yamanaka S . Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2007; 2: 3081–3089.
Acknowledgements
Financial support for this project was provided by the Swiss National Foundation to TDH and DT, the National Institutes of Health, USA to TDH, the European Commission Seventh Framework Programme (GENICA) to TDH and PGP, and the Italian Ministry of Health, Project Giovanni Ricercatori to SC and GT.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Additional information
Edited by G Melino
Supplementary Information accompanies the paper on Cell Death and Differentiation website
Supplementary information
Rights and permissions
About this article
Cite this article
Pasi, C., Dereli-Öz, A., Negrini, S. et al. Genomic instability in induced stem cells. Cell Death Differ 18, 745–753 (2011). https://doi.org/10.1038/cdd.2011.9
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/cdd.2011.9
Keywords
This article is cited by
-
Replication stress causes delayed mitotic entry and chromosome 12 fragility at the ANKS1B large neuronal gene in human induced pluripotent stem cells
Chromosome Research (2023)
-
Chromosomal aberration arises during somatic reprogramming to pluripotent stem cells
Cell Division (2020)
-
Stem cell therapy: old challenges and new solutions
Molecular Biology Reports (2020)
-
Lower genomic stability of induced pluripotent stem cells reflects increased non‐homologous end joining
Cancer Communications (2018)
-
CD34+ cells from dental pulp stem cells with a ZFN-mediated and homology-driven repair-mediated locus-specific knock-in of an artificial β-globin gene
Gene Therapy (2017)


