Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncogenes, Fusion Genes and Tumor Suppressor Genes

Notch signaling in acute promyelocytic leukemia

Abstract

Acute promyelocytic leukemia (APL) is initiated by the PML-RARA (PR) fusion oncogene and has a characteristic expression profile that includes high levels of the Notch ligand Jagged-1 (JAG1). In this study, we used a series of bioinformatic, in vitro, and in vivo assays to assess the role of Notch signaling in human APL samples, and in a PML-RARA knock-in mouse model of APL (Ctsg-PML-RARA). We identified a Notch expression signature in both human primary APL cells and in Kit+Lin−Sca1+ cells from pre-leukemic Ctsg-PML-RARA mice. Both genetic and pharmacologic inhibition of Notch signaling abrogated the enhanced self-renewal seen in hematopoietic stem/progenitor cells from pre-leukemic Ctsg-PML-RARA mice, but had no influence on cells from age-matched wild-type mice. In addition, six of nine murine APL tumors tested displayed diminished growth in vitro when Notch signaling was inhibited pharmacologically. Finally, we found that genetic inhibition of Notch signaling with a dominant-negative Mastermind-like protein reduced APL growth in vivo in a subset of tumors. These findings expand the role of Notch signaling in hematopoietic diseases, and further define the mechanistic events important for PML-RARA-mediated leukemogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Brown D, Kogan S, Lagasse E, Weissman I, Alcalay M, Pelicci PG et al. A PMLRARalpha transgene initiates murine acute promyelocytic leukemia. Proc Natl Acad Sci USA 1997; 94: 2551–2556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Grisolano JL, Wesselschmidt RL, Pelicci PG, Ley TJ . Altered myeloid development and acute leukemia in transgenic mice expressing PML-RAR alpha under control of cathepsin G regulatory sequences. Blood 1997; 89: 376–387.

    CAS  PubMed  Google Scholar 

  3. Westervelt P, Lane AA, Pollock JL, Oldfather K, Holt MS, Zimonjic DB et al. High-penetrance mouse model of acute promyelocytic leukemia with very low levels of PML-RARalpha expression. Blood 2003; 102: 1857–1865.

    Article  CAS  PubMed  Google Scholar 

  4. Kelly LM, Kutok JL, Williams IR, Boulton CL, Amaral SM, Curley DP et al. PML/RARalpha and FLT3-ITD induce an APL-like disease in a mouse model. Proc Natl Acad Sci USA 2002; 99: 8283–8288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kogan SC, Brown DE, Shultz DB, Truong BT, Lallemand-Breitenbach V, Guillemin MC et al. BCL-2 cooperates with promyelocytic leukemia retinoic acid receptor alpha chimeric protein (PMLRARalpha) to block neutrophil differentiation and initiate acute leukemia. J Exp Med 2001; 193: 531–543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Walter MJ, Park JS, Ries RE, Lau SK, McLellan M, Jaeger S et al. Reduced PU.1 expression causes myeloid progenitor expansion and increased leukemia penetrance in mice expressing PML-RARalpha. Proc Natl Acad Sci USA 2005; 102: 12513–12518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jones L, Wei G, Sevcikova S, Phan V, Jain S, Shieh A et al. Gain of MYC underlies recurrent trisomy of the MYC chromosome in acute promyelocytic leukemia. J Exp Med 2010; 207: 2581–2594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wartman LD, Larson DE, Xiang Z, Ding L, Chen K, Lin L et al. Sequencing a mouse acute promyelocytic leukemia genome reveals genetic events relevant for disease progression. J Clin Invest 2011; 121: 1445–1455.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Viale A, De Franco F, Orleth A, Cambiaghi V, Giuliani V, Bossi D et al. Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells. Nature 2009; 457: 51–56.

    Article  CAS  PubMed  Google Scholar 

  10. Wojiski S, Guibal FC, Kindler T, Lee BH, Jesneck JL, Fabian A et al. PML-RARalpha initiates leukemia by conferring properties of self-renewal to committed promyelocytic progenitors. Leukemia 2009; 23: 1462–1471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Uy GL, Lane AA, Welch JS, Grieselhuber NR, Payton JE, Ley TJ . A protease-resistant PML-RAR{alpha} has increased leukemogenic potential in a murine model of acute promyelocytic leukemia. Blood 2010; 116: 3604–3610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Welch JS, Klco JM, Varghese N, Nagarajan R, Ley TJ . Rara haploinsufficiency modestly influences the phenotype of acute promyelocytic leukemia in mice. Blood 2011; 117: 2460–2468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Welch JS, Yuan W, Ley TJ . PML-RARA can increase hematopoietic self-renewal without causing a myeloproliferative disease in mice. J Clin Invest 2011; 121: 1636–1645.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sandy AR, Jones M, Maillard I . Notch signaling and development of the hematopoietic system. Adv Exper Med Biol 2012; 727: 71–88.

    Article  CAS  Google Scholar 

  15. Weng AP, Ferrando AA, Lee W, Morris JP, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    Article  CAS  PubMed  Google Scholar 

  16. Ross ME, Mahfouz R, Onciu M, Liu HC, Zhou X, Song G et al. Gene expression profiling of pediatric acute myelogenous leukemia. Blood 2004; 104: 3679–3687.

    Article  CAS  PubMed  Google Scholar 

  17. Payton JE, Grieselhuber NR, Chang LW, Murakami M, Geiss GK, Link DC et al. High throughput digital quantification of mRNA abundance in primary human acute myeloid leukemia samples. J Clin Invest 2009; 119: 1714–1726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Casorelli I, Tenedini E, Tagliafico E, Blasi MF, Giuliani A, Crescenzi M et al. Identification of a molecular signature for leukemic promyelocytes and their normal counterparts: Focus on DNA repair genes. Leukemia 2006; 20: 1978–1988.

    Article  CAS  PubMed  Google Scholar 

  19. Alcalay M, Meani N, Gelmetti V, Fantozzi A, Fagioli M, Orleth A et al. Acute myeloid leukemia fusion proteins deregulate genes involved in stem cell maintenance and DNA repair. J Clin Invest 2003; 112: 1751–1761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meani N, Minardi S, Licciulli S, Gelmetti V, Coco FL, Nervi C et al. Molecular signature of retinoic acid treatment in acute promyelocytic leukemia. Oncogene 2005; 24: 3358–3368.

    Article  CAS  PubMed  Google Scholar 

  21. Tomasson MH, Xiang Z, Walgren R, Zhao Y, Kasai Y, Miner T et al. Somatic mutations and germline sequence variants in the expressed tyrosine kinase genes of patients with de novo acute myeloid leukemia. Blood 2008; 111: 4797–4808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wartman LD, Welch JS, Uy GL, Klco JM, Lamprecht T, Varghese N et al. Expression and function of PML-RARA in the multipotent hematopoietic progenitor cells of Ctsg-PML-RARA mice. PLoS One 2012; 7: e46529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 2012; 7: 562–578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Weng AP, Nam Y, Wolfe MS, Pear WS, Griffin JD, Blacklow SC et al. Growth suppression of pre-T acute lymphoblastic leukemia cells by inhibition of notch signaling. Mol Cell Biol 2003; 23: 655–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ong CT, Sedy JR, Murphy KM, Kopan R . Notch and presenilin regulate cellular expansion and cytokine secretion but cannot instruct Th1/Th2 fate acquisition. PloS One 2008; 3: e2823.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fortier JM, Payton JE, Cahan P, Ley TJ, Walter MJ, Graubert TA . POU4F1 is associated with t(8;21) acute myeloid leukemia and contributes directly to its unique transcriptional signature. Leukemia 2010; 24: 950–957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Luo H, Li Q, O'Neal J, Kreisel F, Le Beau MM, Tomasson MH . c-Myc rapidly induces acute myeloid leukemia in mice without evidence of lymphoma-associated antiapoptotic mutations. Blood 2005; 106: 2452–2461.

    Article  CAS  PubMed  Google Scholar 

  28. Pollock JL, Westervelt P, Kurichety AK, Pelicci PG, Grisolano JL, Ley TJ . A bcr-3 isoform of RARalpha-PML potentiates the development of PML-RARalpha-driven acute promyelocytic leukemia. Proc Natl Acad Sci USA 1999; 96: 15103–15108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van Doorn-Khosrovani S, Boer JM et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 2004; 350: 1617–1628.

    Article  CAS  PubMed  Google Scholar 

  30. Verhaak RG, Wouters BJ, Erpelinck CA, Abbas S, Beverloo HB, Lugthart S et al. Prediction of molecular subtypes in acute myeloid leukemia based on gene expression profiling. Haematologica 2009; 94: 131–134.

    Article  PubMed  Google Scholar 

  31. Alcalay M, Tiacci E, Bergomas R, Bigerna B, Venturini E, Minardi SP et al. Acute myeloid leukemia bearing cytoplasmic nucleophosmin (NPMc+ AML) shows a distinct gene expression profile characterized by up-regulation of genes involved in stem-cell maintenance. Blood 2005; 106: 899–902.

    Article  CAS  PubMed  Google Scholar 

  32. Moellering RE, Cornejo M, Davis TN, Del Bianco C, Aster JC, Blacklow SC et al. Direct inhibition of the NOTCH transcription factor complex. Nature 2009; 462: 182–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Palomero T, Lim WK, Odom DT, Sulis ML, Real PJ, Margolin A et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci USA 2006; 103: 18261–18266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang H, Zou J, Zhao B, Johannsen E, Ashworth T, Wong H et al. Genome-wide analysis reveals conserved and divergent features of Notch1/RBPJ binding in human and murine T-lymphoblastic leukemia cells. Proc Natl Acad Sci USA 2011; 108: 14908–14913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yuan W, Payton JE, Holt MS, Link DC, Watson MA, DiPersio JF et al. Commonly dysregulated genes in murine APL cells. Blood 2007; 109: 961–970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Maillard I, Koch U, Dumortier A, Shestova O, Xu L, Sai H et al. Canonical notch signaling is dispensable for the maintenance of adult hematopoietic stem cells. Cell Stem Cell 2008; 2: 356–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nam Y, Sliz P, Song L, Aster JC, Blacklow SC . Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell 2006; 124: 973–983.

    Article  CAS  PubMed  Google Scholar 

  38. Maillard I, Weng AP, Carpenter AC, Rodriguez CG, Sai H, Xu L et al. Mastermind critically regulates Notch-mediated lymphoid cell fate decisions. Blood 2004; 104: 1696–1702.

    Article  CAS  PubMed  Google Scholar 

  39. Klco JM, Spencer DH, Lamprecht TL, Sarkaria SM, Wylie T, Magrini V et al. Genomic impact of transient low-dose decitabine treatment on primary AML cells. Blood 2012; 121: 1633–1643.

    Article  Google Scholar 

  40. Wang K, Wang P, Shi J, Zhu X, He M, Jia X et al. PML/RARalpha targets promoter regions containing PU.1 consensus and RARE half sites in acute promyelocytic leukemia. Cancer Cell 2010; 17: 186–197.

    Article  CAS  PubMed  Google Scholar 

  41. Martens JH, Brinkman AB, Simmer F, Francoijs KJ, Nebbioso A, Ferrara F et al. PML-RARalpha/RXR Alters the Epigenetic Landscape in Acute Promyelocytic Leukemia. Cancer Cell 2010; 17: 173–185.

    Article  CAS  PubMed  Google Scholar 

  42. Hoemme C, Peerzada A, Behre G, Wang Y, McClelland M, Nieselt K et al. Chromatin modifications induced by PML-RARalpha repress critical targets in leukemogenesis as analyzed by ChIP-Chip. Blood 2008; 111: 2887–2895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003; 425: 841–846.

    Article  CAS  PubMed  Google Scholar 

  44. Rupec RA, Jundt F, Rebholz B, Eckelt B, Weindl G, Herzinger T et al. Stroma-mediated dysregulation of myelopoiesis in mice lacking I kappa B alpha. Immunity 2005; 22: 479–491.

    Article  CAS  PubMed  Google Scholar 

  45. Chiang MY, Shestova O, Xu L, Aster JC, Pear WS . Divergent effects of supraphysiological Notch signals on leukemia stem cells and hematopoietic stem cells. Blood 2012; 121: 905–917.

    Article  PubMed  Google Scholar 

  46. Lobry C, Oh P, Aifantis I . Oncogenic and tumor suppressor functions of Notch in cancer: it’s NOTCH what you think. J Exp Med 2011; 208: 1931–1935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mercher T, Cornejo MG, Sears C, Kindler T, Moore SA, Maillard I et al. Notch signaling specifies megakaryocyte development from hematopoietic stem cells. Cell Stem Cell 2008; 3: 314–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Santos MA, Sarmento LM, Rebelo M, Doce AA, Maillard I, Dumortier A et al. Notch1 engagement by Delta-like-1 promotes differentiation of B lymphocytes to antibody-secreting cells. Proc Natl Acad Sci USA 2007; 104: 15454–15459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Klinakis A, Lobry C, Abdel-Wahab O, Oh P, Haeno H, Buonamici S et al. A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia. Nature 2011; 473: 230–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lobry C, Ntziachristos P, Ndiaye-Lobry D, Oh P, Cimmino L, Zhu N et al. Notch pathway activation targets AML-initiating cell homeostasis and differentiation. J Exp Med 2013; 210: 301–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs Raphael Kopan, Daniel Link, Matthew Walter, Jacqueline Payton, David H. Spencer and John Welch for assistance and/or helpful discussions. Mieke Hoock, Dan George and Nick Protopsaltis provided invaluable animal husbandry assistance, and Erin Wehmeyer provided excellent technical support. We are grateful to the Cancer Genome Atlas for access to the RNA-Seq data for JAG1. We thank the High Speed Cell Sorter Core, the Laboratory of Clinical Genomics, the Tissue Procurement Core and the Bioinformatics Core of the Siteman Cancer Center at Washington University for their assistance with this study. This work was supported by NIH R01 CA083962, NIH PO1 CA101937 and the Barnes Jewish Hospital Foundation (all to TJL), NIH T32 HL007088-35 (NRG) and the Doris Duke Charitable Foundation to Washington University (SMS, Clinical Research Fellow).

Author Contributions

NRG, JMK and TJL designed the research, analyzed data and wrote the paper; TL, AMV, LDW and SMS performed experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T J Ley.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grieselhuber, N., Klco, J., Verdoni, A. et al. Notch signaling in acute promyelocytic leukemia. Leukemia 27, 1548–1557 (2013). https://doi.org/10.1038/leu.2013.68

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/leu.2013.68

Keywords

This article is cited by

Search

Quick links