Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

DNA base mismatch detection with bulky rhodium intercalators: synthesis and applications

Abstract

This protocol describes the syntheses and applications of two metallointercalators, Rh(bpy)2(chrysi)3+ and Rh(bpy)2(phzi)3+, that target single base mismatches in DNA. The complexes bind mismatched DNA sites specifically and, upon photoactivation, promote strand scission neighboring the mismatch. Owing to their high specificity and sequence context independence, targeting mismatches with these complexes offers an attractive alternative to current mismatch- and SNP-detection methodologies. This protocol also describes the synthesis of these complexes and their use in marking mismatched sites. Irradiation of 32P-labeled duplex DNA with either intercalator followed by denaturing PAGE allows the detection of mismatches in oligonucleotides. The protocol also outlines a method for efficient detection of single nucleotide polymorphisms (SNPs) in larger genes or plasmids. Pooled genes are denatured and re-annealed to form heteroduplexes; they are then incubated with either complex, irradiated and analyzed using capillary electrophoresis to probe for mismatches (SNP sites). The synthesis of the metallointercalators requires approximately 5–7 d. The mismatch- and SNP-detection experiments each require approximately 3 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Δ-[Rh(bpy)2(chrysi)]3+ (left) and Δ-[Rh(bpy)2(phzi)]3+ (right).
Figure 3: Structural model of Rh(bpy)2(chrysi)3+ bound to a CA mismatch (Adapted with permission from ref. 16).
Figure 4
Figure 5
Figure 6
Figure 7: UV-visible spectra of Rh(bpy)2(chrysi)3+ (blue) and Rh(bpy)2(phzi)3+ (red) in water.
Figure 8
Figure 9: Circular dichroism spectra of Δ- and Λ-[Rh(bpy)2(chrysi)](Cl)3 in water (blue and red, respectively).
Figure 10: Phosphorimagery of a 20% polyacrylamide denaturing gel showing mismatch-specific photocleavage by Δ-[Rh(bpy)2(chrysi)]3+ of a 5-32P-labeled 36-mer containing a CC-mismatch.
Figure 11: Schematic of SNP detection with Rh(bpy)2(phzi)3+.
Figure 12: Sample SNP detection gel electrophoresis traces.

Similar content being viewed by others

References

  1. Erkkila, K.E., Odom, D.T. & Barton, J.K. Recognition and reaction of metallointercalators with DNA. Chem. Rev. 99, 2777–2796 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Kielkopf, C.L., Erkkila, K.E., Hudson, B.P., Barton, J.K. & Rees, D.C. Structure of a photoactive rhodium complex intercalated into DNA. Nat. Struct. Biol. 7, 117–121 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Jackson, B.A. & Barton, J.K. Recognition of DNA base mismatches by a rhodium intercalator. J. Am. Chem. Soc. 119, 12986–12987 (1997).

    Article  CAS  Google Scholar 

  4. Jackson, B.A., Alekseyev, V.Y. & Barton, J.K. A versatile mismatch recognition agent: specific cleavage of a plasmid DNA at a single base mispair. Biochemistry 38, 4655–4662 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Jackson, B.A. & Barton, J.K. Recognition of base mismatches in DNA by 5,6-chrysenequinone diimine complexes of rhodium(III): a proposed mechanism for preferential binding in destabilized regions of the double helix. Biochemistry 39, 6176–6182 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Modrich, P. Mechanisms and biological effects of mismatch repair. Annu. Rev. Genet. 25, 229–253 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Kolodner, R. Biochemistry and genetics of eukaryotic mismatch repair. Genes Dev. 10, 1433–1442 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Harfe, B.D. & Jinks-Robertson, S. DNA mismatch repair and genetic instability. Annu. Rev. Genet. 34, 359–399 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Modrich, P. Mechanisms in eukaryotic mismatch repair. J. Biol. Chem. 281, 30305–30309 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Kolodner, R.D. Mismatch repair: mechanisms and relationship to cancer susceptibility. Trends Biochem. Sci. 20, 397–401 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Arzimanoglou, I.I., Gilbert, F. & Barber, H.R. Microsatellite instability in human solid tumors. Cancer 82, 1808–1820 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Loeb, L.A., Loeb, K.R. & Anderson, J.P. Multiple mutations and cancer. Proc. Natl. Acad. Sci. USA 100, 776–781 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Junicke, H. et al. A rhodium(III) complex for high-affinity DNA base-pair mismatch recognition. Proc. Natl. Acad. Sci. USA 100, 3737–3742 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Syvänen, A. Acessing genetic variation: genotyping single nucleotide polymorphisms. Nat. Rev. Genet. 2, 930–942 (2001).

    Article  PubMed  Google Scholar 

  15. Hart, J.R., Johnson, M.D. & Barton, J.K. Single-nucleotide polymorphism discovery by targeted DNA photocleavage. Proc. Natl. Acad. Sci. USA 101, 14040–14044 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Pierre, V.C., Kaiser, J.T. & Barton, J.K. Insights into finding a mismatch through the structure of a mispaired DNA bound by a rhodium intercalator. Proc. Natl. Acad. Sci. USA 104, 429–434 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Mürner, H., Jackson, B.A. & Barton, J.K. A versatile synthetic approach to rhodium(III) diimine metallointercalators: condensation of o-quinones with coordinated cis-ammines. Inorg. Chem. 37, 3007–3012 (1998).

    Article  Google Scholar 

  18. Krotz, A.H., Kuo, L.Y. & Barton, J.K. Metallointercalators: syntheses, structures, and photochemical characterizations of phenanthrenequinone diimine complexes of rhodium(III). Inorg. Chem. 32, 5963–5974 (1993).

    Article  CAS  Google Scholar 

  19. Ferrari, M., Carrera, P. & Cremonesi, L. Different approaches of molecular scanning of point mutations in genetic diseases. Pure Appl. Chem. 68, 1913–1918 (1996).

    Article  CAS  Google Scholar 

  20. Kwok, P.Y., Deng, Q., Zakeri, H., Taylor, S.L. & Nickerson, D.A. Increasing the information content of STS-based genome maps: identifying polymorphisms in mapped STSs. Genomics 31, 123–126 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Taillon-Miller, P., Piernot, E.E. & Kwok, P.Y. Efficient approach to unique single-nucleotide polymorphism discovery. Genome Res. 9, 499–505 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhou, W. Mapping genetic alterations in tumors with single nucleotide polymorphisms. Curr. Opin. Oncol. 15, 50–54 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Schork, N.J., Fallin, D. & Lanchbury, J.S. Single nucleotide polymorphisms and the future of genetic epidemiology. Clin. Genet. 58, 250–264 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Rieder, M.J., Taylor, S.L., Tobe, V.O. & Nickerson, D.A. Automating the identification of DNA variations using quality-based fluorescence re-sequencing: analysis of the human mitochondrial genome. Nucleic Acids Res. 26, 967–973 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Petitjean, A. & Barton, J.K. Tuning the DNA reactivity of cis-platinum: conjugation to a mismatch-specific metallointercalator. J. Am. Chem. Soc. 126, 14728–14729 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Schatzschneider, U. & Barton, J.K. Bifunctional rhodium intercalator conjugates as mismatch-directing DNA alkylating agents. J. Am. Chem. Soc. 126, 8630–8631 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Zeglis, B.M. & Barton, J.K. A mismatch-selective bifunctional rhodium-oregon green conjugate: a fluorescent probe for mismatched DNA. J. Am. Chem. Soc. 128, 5654–5655 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Brunner, J. & Barton, J.K. Targeting DNA mismatches with rhodium intercalators functionalized with a cell-penetrating peptide. Biochemistry 45, 12295–12302 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Hart, J.R., Glebov, O., Ernst, R.J., Kirsch, I.R. & Barton, J.K. DNA mismatch-specific targeting and hypersensitivity of mismatch-repair-deficient cells to bulky rhodium(III) intercalators. Proc. Natl. Acad. Sci. USA 103, 15359–15363 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the National Institutes of Health (GM33309) for their financial support. We also thank ABI for their support. In addition, we are grateful to our co-workers, J. Hart, I. Lau, V. Pierre and R. Ernst, for their help in working out experimental details.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline K Barton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeglis, B., Barton, J. DNA base mismatch detection with bulky rhodium intercalators: synthesis and applications. Nat Protoc 2, 357–371 (2007). https://doi.org/10.1038/nprot.2007.22

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nprot.2007.22

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing