Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Analysis and interpretation of quadratic models of receptive fields

Abstract

In this protocol, we present a procedure to analyze and visualize models of neuronal input–output functions that have a quadratic, a linear and a constant term, to determine their overall behavior. The suggested interpretations are close to those given by physiological studies of neurons, making the proposed methods particularly suitable for the analysis of receptive fields resulting from physiological measurements or model simulations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Eigenvectors of the quadratic term of two units learned in the simulation.
Figure 2: Optimal excitatory and inhibitory stimuli for some of the units in the simulation.
Figure 3: Illustration of the method used to visualize the invariances.
Figure 4: Example invariances at the optimal stimuli for some of the units.
Figure 5: Significant invariances.

Similar content being viewed by others

References

  1. Berkes, P. & Wiskott, L. Applying slow feature analysis to image sequences yields a rich repertoire of complex cell properties. In Artificial Neural Networks-ICANN 2002 Proceedings, Lecture Notes in Computer Science (ed. Dorronsoro, J.R.) 81–86 (Springer, Berlin, 2002).

    Chapter  Google Scholar 

  2. Berkes, P. & Wiskott, L. Slow feature analysis yields a rich repertoire of complex cell properties. J. Vis. 5, 579–602 (2005).

    Article  PubMed Central  Google Scholar 

  3. Marmarelis, P. & Marmarelis, V. Analysis of physiological systems: the white-noise approach (Plenum Press, New York, 1978).

    Book  Google Scholar 

  4. de Ruyter van Steveninck, R. & Bialek, W. Real-time performance of a movement-sensitive neuron in the blowfly visual system: coding and information transfer in short spike sequences. Proc. R. Soc. Lond. B Biol. Sci. 234, 379–414 (1988).

    Article  Google Scholar 

  5. Lewis, E.R., Henry, K.R. & Yamada, W.M. Tuning and timing in the gerbil ear: Wiener-kernel analysis. Hear. Res. 174, 206–221 (2002).

    Article  PubMed Central  Google Scholar 

  6. Touryan, J., Lau, B. & Dan, Y. Isolation of relevant visual features from random stimuli for cortical complex cells. J. Neurosci. 22, 10811–10818 (2002).

    Article  CAS  Google Scholar 

  7. Rust, N.C., Schwartz, O., Movshon, J.A. & Simoncelli, E.P. Spike-triggered characterization of excitatory and suppressive stimulus dimensions in monkey V1. Neurocomp. 58–60, 793–799 (2004).

    Article  Google Scholar 

  8. Simoncelli, E.P., Paninski, L., Pillow, J.W. & Schwartz, O. Characterization of neural responses with stochastic stimuli. In The Cognitive Neurosciences 3rd edn. (ed. Gazzaniga, M.S.) 327–338 (MIT Press, Cambridge, Massachusetts, 2004).

    Google Scholar 

  9. Rust, N.C., Schwartz, O., Movshon, J.A. & Simoncelli, E.P. Spatiotemporal elements of macaque V1 receptive fields. Neuron 46, 945–956 (2005).

    Article  CAS  Google Scholar 

  10. Touryan, J., Felsen, G. & Dan, Y. Spatial structure of complex cell receptive fields measured with natural images. Neuron 45, 781–791 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  11. Rapela, J., Mendel, J.M. & Grzywacz, N.M. Estimating nonlinear receptive fields from natural images. J. Vis. 4, 441–474 (2006).

    Google Scholar 

  12. Schwartz, O., Pillow, J.W., Rust, N.C. & Simoncelli, E.P. Spike-triggered neural characterization. J. Vis. 6, 484–507 (2006).

    Article  PubMed Central  Google Scholar 

  13. Franz, M.O. & Schölkopf, B. A unifying view of Wiener and Volterra theory and polynomial kernel regression. Neural Comput. 18, 3097–3118 (2006).

    Article  PubMed Central  Google Scholar 

  14. Hashimoto, W. Quadratic forms in natural images. Netw. Comput. Neural Syst. 14, 765–788 (2003).

    Article  Google Scholar 

  15. Bartsch, H. & Obermayer, K. Second-order statistics of natural images. Neurocomp. 52–54, 467–472 (2003).

    Article  Google Scholar 

  16. Hyvärinen, A. & Hoyer, P. Emergence of phase- and shift-invariant features by decomposition of natural images into independent feature subspaces. Neural Comput. 12, 1705–1720 (2000).

    Article  PubMed Central  Google Scholar 

  17. Hyvärinen, A. & Hoyer, P. A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images. Vision Res. 41, 2413–2423 (2001).

    Article  PubMed Central  Google Scholar 

  18. Körding, K.P., Kayser, C., Einhäuser, W. & König, P. How are complex cell properties adapted to the statistics of natural stimuli? J. Neurophysiol. 91, 206–212 (2004).

    Article  PubMed Central  Google Scholar 

  19. Adelson, E.H. & Bergen, J.R. Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A 2, 284–299 (1985).

    Article  CAS  PubMed Central  Google Scholar 

  20. Berkes, P. & Wiskott, L. On the analysis and interpretation of inhomogeneous quadratic forms as receptive fields. Neural Comput. 18, 1868–1895 (2006).

    Article  PubMed Central  Google Scholar 

  21. Wiskott, L. & Sejnowski, T.J. Slow feature analysis: unsupervised learning of invariances. Neural Comput. 14, 715–770 (2002).

    Article  PubMed Central  Google Scholar 

  22. Jones, J.P. & Palmer, L.A. An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. J. Neurophysiol. 58, 1233–1257 (1987).

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The figures have been reproduced with permission from ref. 20. This work has been supported by a grant to L.W. from the Volkswagen Foundation and by the Gatsby Charitable Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Berkes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berkes, P., Wiskott, L. Analysis and interpretation of quadratic models of receptive fields. Nat Protoc 2, 400–407 (2007). https://doi.org/10.1038/nprot.2007.27

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nprot.2007.27

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing