Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Melioidosis

Abstract

Burkholderia pseudomallei is a Gram-negative environmental bacterium and the aetiological agent of melioidosis, a life-threatening infection that is estimated to account for 89,000 deaths per year worldwide. Diabetes mellitus is a major risk factor for melioidosis, and the global diabetes pandemic could increase the number of fatalities caused by melioidosis. Melioidosis is endemic across tropical areas, especially in southeast Asia and northern Australia. Disease manifestations can range from acute septicaemia to chronic infection, as the facultative intracellular lifestyle and virulence factors of B. pseudomallei promote survival and persistence of the pathogen within a broad range of cells, and the bacteria can manipulate the host's immune responses and signalling pathways to escape surveillance. The majority of patients present with sepsis, but specific clinical presentations and their severity vary depending on the route of bacterial entry (skin penetration, inhalation or ingestion), host immune function and bacterial strain and load. Diagnosis is based on clinical and epidemiological features as well as bacterial culture. Treatment requires long-term intravenous and oral antibiotic courses. Delays in treatment due to difficulties in clinical recognition and laboratory diagnosis often lead to poor outcomes and mortality can exceed 40% in some regions. Research into B. pseudomallei is increasing, owing to the biothreat potential of this pathogen and increasing awareness of the disease and its burden; however, better diagnostic tests are needed to improve early confirmation of diagnosis, which would enable better therapeutic efficacy and survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Milestones in the history of melioidosis.
Figure 2: Estimated mortality and reported cases of melioidosis.
Figure 3: Schematic model of host–pathogen interactions and pathophysiology of melioidosis.
Figure 4: Clinical manifestations of melioidosis.
Figure 5: Identification of Burkholderia pseudomallei colonies on three common types of agar.

Similar content being viewed by others

References

  1. Whitmore, A. An Account of a Glanders-like Disease occurring in Rangoon. J. Hyg. 13, 1–34.1 (1913).

    CAS  PubMed  Google Scholar 

  2. Kaestli, M. et al. Out of the ground: aerial and exotic habitats of the melioidosis bacterium Burkholderia pseudomallei in grasses in Australia. Environ. Microbiol. 14, 2058–2070 (2012).

    PubMed  Google Scholar 

  3. Limmathurotsakul, D. et al. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nat. Microbiol. 1, 15008 (2016). This is a key publication on the global burden of melioidosis that uses human, animal and environmental data to estimate the number of human melioidosis cases per year at 165,000 worldwide, of which 89,000 are fatal.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wiersinga, W. J., Currie, B. J. & Peacock, S. J. Melioidosis. N. Engl. J. Med. 367, 1035–1044 (2012). This article reviews the clinical manifestations, epidemiology, pathogenesis, diagnosis and treatment of melioidosis, with an emphasis on clinical management.

    CAS  PubMed  Google Scholar 

  5. Limmathurotsakul, D. et al. Activities of daily living associated with acquisition of melioidosis in northeast Thailand: a matched case-control study. PLoS Negl. Trop. Dis. 7, e2072 (2013).

    PubMed  PubMed Central  Google Scholar 

  6. Cheng, A. C. & Currie, B. J. Melioidosis: epidemiology, pathophysiology, and management. Clin. Microbiol. Rev. 18, 383–416 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Currie, B. J., Ward, L. & Cheng, A. C. The epidemiology and clinical spectrum of melioidosis: 540 cases from the 20 year Darwin prospective study. PLoS Negl. Trop. Dis. 4, e900 (2010). This is the Darwin prospective study of melioidosis that has provided numerous new insights into the epidemiology and clinical spectrum of melioidosis. This article concludes that melioidosis should be regarded as an opportunistic infection that is unlikely to kill a healthy person in a resource-rich environment, provided the infection is diagnosed early.

    PubMed  PubMed Central  Google Scholar 

  8. Yee, K. C., Lee, M. K., Chua, C. T. & Puthucheary, S. D. Melioidosis, the great mimicker: a report of 10 cases from Malaysia. J. Trop. Med. Hyg. 91, 249–254 (1988).

    CAS  PubMed  Google Scholar 

  9. Maharjan, B. et al. Recurrent melioidosis in patients in northeast Thailand is frequently due to reinfection rather than relapse. J. Clin. Microbiol. 43, 6032–6034 (2005).

    PubMed  PubMed Central  Google Scholar 

  10. Chetchotisakd, P. et al. Trimethoprim-sulfamethoxazole versus trimethoprim-sulfamethoxazole plus doxycycline as oral eradicative treatment for melioidosis (MERTH): a multicentre, double-blind, non-inferiority, randomised controlled trial. Lancet 383, 807–814 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Suputtamongkol, Y. et al. Amoxycillin-clavulanic acid treatment of melioidosis. Trans. R. Soc. Trop. Med. Hyg. 85, 672–675 (1991).

    CAS  PubMed  Google Scholar 

  12. Currie, B. J. Melioidosis: evolving concepts in epidemiology, pathogenesis, and treatment. Semin. Respir. Crit. Care Med. 36, 111–125 (2015).

    PubMed  Google Scholar 

  13. Willcocks, S. J., Denman, C. C., Atkins, H. S. & Wren, B. W. Intracellular replication of the well-armed pathogen Burkholderia pseudomallei. Curr. Opin. Microbiol. 29, 94–103 (2016).

    CAS  PubMed  Google Scholar 

  14. Centers for Disease Control and Prevention. Possession, use, and transfer of select agents and toxins; biennial review. Final rule. Fed. Regist. 77, 61083–61115 (2012).

    Google Scholar 

  15. Silva, E. B. & Dow, S. W. Development of Burkholderia mallei and pseudomallei vaccines. Front. Cell. Infect. Microbiol. 3, 10 (2013).

    PubMed  PubMed Central  Google Scholar 

  16. Titball, R. W., Burtnick, M. N., Bancroft, G. J. & Brett, P. Burkholderia pseudomallei and Burkholderia mallei vaccines: are we close to clinical trials? Vaccine 35, 5981–5989 (2017). This is an up-to-date summary of vaccine research and front-line contenders with potential for success.

    CAS  PubMed  Google Scholar 

  17. Limmathurotsakul, D. et al. Systematic review and consensus guidelines for environmental sampling of Burkholderia pseudomallei.. PLoS Negl. Trop. Dis. 7, e2105 (2013).

    PubMed  PubMed Central  Google Scholar 

  18. Pumpuang, A. et al. Survival of Burkholderia pseudomallei in distilled water for 16 years. Trans. R. Soc. Trop. Med. Hyg. 105, 598–600 (2011).

    PubMed  PubMed Central  Google Scholar 

  19. Hantrakun, V. et al. Soil nutrient depletion is associated with the presence of Burkholderia pseudomallei. Appl. Environ. Microbiol. 82, 7086–7092 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Yip, T. W. et al. Endemic melioidosis in residents of desert region after atypically intense rainfall in central australia, 2011. Emerg. Infect. Dis. 21, 1038–1040 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Currie, B. J. et al. A cluster of melioidosis cases from an endemic region is clonal and is linked to the water supply using molecular typing of Burkholderia pseudomallei isolates. Am. J. Trop. Med. Hyg. 65, 177–179 (2001).

    CAS  PubMed  Google Scholar 

  22. Inglis, T. J. et al. Acute melioidosis outbreak in Western Australia. Epidemiol. Infect. 123, 437–443 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Limmathurotsakul, D. et al. Melioidosis caused by Burkholderia pseudomallei in drinking water, Thailand, 2012. Emerg. Infect. Dis. 20, 265–268 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. Merritt, A. J. et al. Cutaneous melioidosis cluster caused by contaminated wound irrigation fluid. Emerg. Infect. Dis. 22, 1420–1427 (2016).

    Google Scholar 

  25. Gal, D. et al. Contamination of hand wash detergent linked to occupationally acquired melioidosis. Am. J. Trop. Med. Hyg. 71, 360–362 (2004).

    PubMed  Google Scholar 

  26. Kinoshita, R. E. Epidemiology of melioidosis in an oceanarium: a clinical, environmental & molecular study. Thesis, Univ. of Hong Kong (2003).

    Google Scholar 

  27. Chen, P. S. et al. Airborne transmission of melioidosis to humans from environmental aerosols contaminated with B. pseudomallei. PLoS Negl. Trop. Dis. 9, e0003834 (2015).

    PubMed  PubMed Central  Google Scholar 

  28. Currie, B. J. et al. Use of whole-genome sequencing to link Burkholderia pseudomallei from air sampling to mediastinal melioidosis, Australia. Emerg. Infect. Dis. 21, 2052–2054 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Thatrimontrichai, A. & Maneenil, G. Neonatal melioidosis: systematic review of the literature. Pediatr. Infect. Dis. J. 31, 1195–1197 (2012).

    PubMed  Google Scholar 

  30. Rolim, D. B. et al. Melioidosis, northeastern Brazil. Emerg. Infect. Dis. 11, 1458–1460 (2005).

    PubMed  PubMed Central  Google Scholar 

  31. Salam, A. P. et al. Melioidosis acquired by traveler to Nigeria. Emerg. Infect. Dis. 17, 1296–1298 (2011).

    PubMed  PubMed Central  Google Scholar 

  32. Birnie, E., Wiersinga, W. J., Limmathurotsakul, D. & Grobusch, M. P. Melioidosis in Africa: should we be looking more closely? Future Microbiol. 10, 273–281 (2015).

    CAS  PubMed  Google Scholar 

  33. Wiersinga, W. J. et al. Clinical, environmental, and serologic surveillance studies of melioidosis in Gabon, 2012–2013. Emerg. Infect. Dis. 21, 40–47 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. McLeod, C. et al. Clinical presentation and medical management of melioidosis in children: a 24-year prospective study in the Northern Territory of Australia and review of the literature. Clin. Infect. Dis. 60, 21–26 (2015).

    CAS  PubMed  Google Scholar 

  35. Limmathurotsakul, D. et al. Increasing incidence of human melioidosis in Northeast Thailand. Am. J. Trop. Med. Hyg. 82, 1113–1117 (2010).

    PubMed  PubMed Central  Google Scholar 

  36. Currie, B. J. et al. Melioidosis epidemiology and risk factors from a prospective whole-population study in northern Australia. Trop. Med. Int. Health 9, 1167–1174 (2004).

    Google Scholar 

  37. Fong, S. M., Wong, K. J., Fukushima, M. & Yeo, T. W. Thalassemia major is a major risk factor for pediatric melioidosis in Kota Kinabalu, Sabah, Malaysia. Clin. Infect. Dis. 60, 1802–1807 (2015).

    PubMed  Google Scholar 

  38. Turner, P. et al. A retrospective analysis of melioidosis in Cambodian children, 2009–2013. BMC Infect. Dis. 16, 688 (2016).

    PubMed  PubMed Central  Google Scholar 

  39. Lim, M. K., Tan, E. H., Soh, C. S. & Chang, T. L. Burkholderia pseudomallei infection in the Singapore Armed Forces from 1987 to 1994 — an epidemiological review. Ann. Acad. Med. Singapore 26, 13–17 (1997).

    CAS  PubMed  Google Scholar 

  40. Ooi, W. F. et al. The condition-dependent transcriptional landscape of Burkholderia pseudomallei. PLoS Genet. 9, e1003795 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wiersinga, W. J., van der Poll, T., White, N. J., Day, N. P. & Peacock, S. J. Melioidosis: insights into the pathogenicity of Burkholderia pseudomallei. Nat. Rev. Microbiol. 4, 272–282 (2006).

    CAS  PubMed  Google Scholar 

  42. Allwood, E. M., Devenish, R. J., Prescott, M., Adler, B. & Boyce, J. D. Strategies for intracellular survival of Burkholderia pseudomallei. Front. Microbiol. 2, 170 (2011).

    PubMed  PubMed Central  Google Scholar 

  43. Stone, J. K., DeShazer, D., Brett, P. J. & Burtnick, M. N. Melioidosis: molecular aspects of pathogenesis. Expert Rev. Anti Infect. Ther. 12, 1487–1499 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lazar Adler, N. R. et al. The molecular and cellular basis of pathogenesis in melioidosis: how does Burkholderia pseudomallei cause disease? FEMS Microbiol. Rev. 33, 1079–1099 (2009).

    PubMed  Google Scholar 

  45. Sun, G. W. & Gan, Y. H. Unraveling type III secretion systems in the highly versatile Burkholderia pseudomallei. Trends Microbiol. 18, 561–568 (2010).

    CAS  PubMed  Google Scholar 

  46. Stevens, M. P. et al. An Inv/Mxi-Spa-like type III protein secretion system in Burkholderia pseudomallei modulates intracellular behaviour of the pathogen. Mol. Microbiol. 46, 649–659 (2002).

    CAS  PubMed  Google Scholar 

  47. Burtnick, M. N., Brett, P. J. & DeShazer, D. Proteomic analysis of the Burkholderia pseudomallei type II secretome reveals hydrolytic enzymes, novel proteins, and the deubiquitinase TssM. Infect. Immun. 82, 3214–3226 (2014).

    PubMed  PubMed Central  Google Scholar 

  48. Campos, C. G., Byrd, M. S. & Cotter, P. A. Functional characterization of Burkholderia pseudomallei trimeric autotransporters. Infect. Immun. 81, 2788–2799 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ahmed, K. et al. Attachment of Burkholderia pseudomallei to pharyngeal epithelial cells: a highly pathogenic bacteria with low attachment ability. Am. J. Trop. Med. Hyg. 60, 90–93 (1999).

    CAS  PubMed  Google Scholar 

  50. Essex-Lopresti, A. E. et al. A type IV pilin, PilA, contributes to adherence of Burkholderia pseudomallei and virulence in vivo. Infect. Immun. 73, 1260–1264 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Phewkliang, A., Wongratanacheewin, S. & Chareonsudjai, S. Role of Burkholderia pseudomallei in the invasion, replication and induction of apoptosis in human epithelial cell lines. Southeast Asian J. Trop. Med. Public Health 41, 1164–1176 (2010).

    PubMed  Google Scholar 

  52. David, J., Bell, R. E. & Clark, G. C. Mechanisms of disease: host-pathogen interactions between Burkholderia species and lung epithelial cells. Front. Cell. Infect. Microbiol. 5, 80 (2015).

    PubMed  PubMed Central  Google Scholar 

  53. Chuaygud, T., Tungpradabkul, S., Sirisinha, S., Chua, K. L. & Utaisincharoen, P. A role of Burkholderia pseudomallei flagella as a virulent factor. Trans. R. Soc. Trop. Med. Hyg. 102 (Suppl. 1), S140–S144 (2008).

    PubMed  Google Scholar 

  54. Balder, R. et al. Identification of Burkholderia mallei and Burkholderia pseudomallei adhesins for human respiratory epithelial cells. BMC Microbiol. 10, 250 (2010).

    PubMed  PubMed Central  Google Scholar 

  55. Stevens, M. P. et al. A Burkholderia pseudomallei type III secreted protein, BopE, facilitates bacterial invasion of epithelial cells and exhibits guanine nucleotide exchange factor activity. J. Bacteriol. 185, 4992–4996 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kager, L. M., Wiersinga, W. J., Roelofs, J. J., van ‘t Veer, C. & van der Poll, T. Deficiency of protease-activated receptor-1 limits bacterial dissemination during severe Gram-negative sepsis (melioidosis). Microbes Infect. 16, 171–174 (2014).

    CAS  PubMed  Google Scholar 

  57. Pruksachartvuthi, S., Aswapokee, N. & Thankerngpol, K. Survival of Pseudomonas pseudomallei in human phagocytes. J. Med. Microbiol. 31, 109–114 (1990).

    CAS  PubMed  Google Scholar 

  58. Jones, A. L., Beveridge, T. J. & Woods, D. E. Intracellular survival of Burkholderia pseudomallei. Infect. Immun. 64, 782–790 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Harley, V. S., Dance, D. A., Tovey, G., McCrossan, M. V. & Drasar, B. S. An ultrastructural study of the phagocytosis of Burkholderia pseudomallei. Microbios 94, 35–45 (1998).

    CAS  PubMed  Google Scholar 

  60. Kespichayawattana, W., Rattanachetkul, S., Wanun, T., Utaisincharoen, P. & Sirisinha, S. Burkholderia pseudomallei induces cell fusion and actin-associated membrane protrusion: a possible mechanism for cell-to-cell spreading. Infect. Immun. 68, 5377–5384 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ray, K., Marteyn, B., Sansonetti, P. J. & Tang, C. M. Life on the inside: the intracellular lifestyle of cytosolic bacteria. Nat. Rev. Microbiol. 7, 333–340 (2009).

    CAS  PubMed  Google Scholar 

  62. Stevens, M. P. et al. Attenuated virulence and protective efficacy of a Burkholderia pseudomallei bsa type III secretion mutant in murine models of melioidosis. Microbiology 150, 2669–2676 (2004).

    CAS  PubMed  Google Scholar 

  63. Sun, G. W., Lu, J., Pervaiz, S., Cao, W. P. & Gan, Y. H. Caspase-1 dependent macrophage death induced by Burkholderia pseudomallei. Cell. Microbiol. 7, 1447–1458 (2005).

    CAS  PubMed  Google Scholar 

  64. Suparak, S. et al. Multinucleated giant cell formation and apoptosis in infected host cells is mediated by Burkholderia pseudomallei type III secretion protein BipB. J. Bacteriol. 187, 6556–6560 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ireland, P. M., Marshall, L., Norville, I. & Sarkar-Tyson, M. The serine protease inhibitor Ecotin is required for full virulence of Burkholderia pseudomallei. Microb. Pathog. 67–68, 55–58 (2014).

    PubMed  Google Scholar 

  66. Nathan, S. A. & Puthucheary, S. D. An electronmicroscopic study of the interaction of Burkholderia pseudomallei and human macrophages. Malays. J. Pathol. 27, 3–7 (2005).

    Google Scholar 

  67. Miyagi, K., Kawakami, K. & Saito, A. Role of reactive nitrogen and oxygen intermediates in gamma interferon-stimulated murine macrophage bactericidal activity against Burkholderia pseudomallei. Infect. Immun. 65, 4108–4113 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ekchariyawat, P. et al. Burkholderia pseudomallei-induced expression of suppressor of cytokine signaling 3 and cytokine-inducible src homology 2-containing protein in mouse macrophages: a possible mechanism for suppression of the response to gamma interferon stimulation. Infect. Immun. 73, 7332–7339 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Wiersinga, W. J. et al. Immunosuppression associated with interleukin-1R-associated-kinase-M upregulation predicts mortality in Gram-negative sepsis (melioidosis). Crit. Care Med. 37, 569–576 (2009).

    CAS  PubMed  Google Scholar 

  70. Vanaporn, M. et al. Superoxide dismutase C is required for intracellular survival and virulence of Burkholderia pseudomallei. Microbiology 157, 2392–2400 (2011).

    CAS  PubMed  Google Scholar 

  71. Loprasert, S., Whangsuk, W., Sallabhan, R. & Mongkolsuk, S. Regulation of the katG-dpsA operon and the importance of KatG in survival of Burkholderia pseudomallei exposed to oxidative stress. FEBS Lett. 542, 17–21 (2003).

    CAS  PubMed  Google Scholar 

  72. Loprasert, S., Sallabhan, R., Whangsuk, W. & Mongkolsuk, S. Compensatory increase in ahpC gene expression and its role in protecting Burkholderia pseudomallei against reactive nitrogen intermediates. Arch. Microbiol. 180, 498–502 (2003).

    CAS  PubMed  Google Scholar 

  73. Loprasert, S., Whangsuk, W., Sallabhan, R. & Mongkolsuk, S. DpsA protects the human pathogen Burkholderia pseudomallei against organic hydroperoxide. Arch. Microbiol. 182, 96–101 (2004).

    CAS  PubMed  Google Scholar 

  74. Myers, N. D. et al. The role of NOD2 in murine and human melioidosis. J. Immunol. 192, 300–307 (2014).

    CAS  PubMed  Google Scholar 

  75. Rinchai, D. et al. Macroautophagy is essential for killing of intracellular Burkholderia pseudomallei in human neutrophils. Autophagy 11, 748–755 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Pudla, M., Kananurak, A., Limposuwan, K., Sirisinha, S. & Utaisincharoen, P. Nucleotide-binding oligomerization domain-containing protein 2 regulates suppressor of cytokine signaling 3 expression in Burkholderia pseudomallei-infected mouse macrophage cell line RAW 264.7. Innate Immun. 17, 532–540 (2011).

    CAS  PubMed  Google Scholar 

  77. Gong, L. et al. The Burkholderia pseudomallei type III secretion system and BopA are required for evasion of LC3-associated phagocytosis. PLoS ONE 6, e17852 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Cullinane, M. et al. Stimulation of autophagy suppresses the intracellular survival of Burkholderia pseudomallei in mammalian cell lines. Autophagy 4, 744–753 (2008).

    CAS  PubMed  Google Scholar 

  79. Chanchamroen, S., Kewcharoenwong, C., Susaengrat, W., Ato, M. & Lertmemongkolchai, G. Human polymorphonuclear neutrophil responses to Burkholderia pseudomallei in healthy and diabetic subjects. Infect. Immun. 77, 456–463 (2009).

    CAS  PubMed  Google Scholar 

  80. Breitbach, K. et al. Actin-based motility of Burkholderia pseudomallei involves the Arp 2/3 complex, but not N-WASP and Ena/VASP proteins. Cell. Microbiol. 5, 385–393 (2003).

    CAS  PubMed  Google Scholar 

  81. Stevens, M. P. et al. Identification of a bacterial factor required for actin-based motility of Burkholderia pseudomallei. Mol. Microbiol. 56, 40–53 (2005).

    CAS  PubMed  Google Scholar 

  82. St John, J. A. et al. Burkholderia pseudomallei penetrates the brain via destruction of the olfactory and trigeminal nerves: implications for the pathogenesis of neurological melioidosis. mBio 5, e00025 (2014).

    PubMed  PubMed Central  Google Scholar 

  83. Sarovich, D. S. et al. Variable virulence factors in Burkholderia pseudomallei (melioidosis) associated with human disease. PLoS ONE 9, e91682 (2014).

    PubMed  PubMed Central  Google Scholar 

  84. Harley, V. S., Dance, D. A., Drasar, B. S. & Tovey, G. Effects of Burkholderia pseudomallei and other Burkholderia species on eukaryotic cells in tissue culture. Microbios 96, 71–93 (1998).

    CAS  PubMed  Google Scholar 

  85. French, C. T. et al. Dissection of the Burkholderia intracellular life cycle using a photothermal nanoblade. Proc. Natl Acad. Sci. USA 108, 12095–12100 (2011).

    CAS  PubMed  Google Scholar 

  86. Williams, N. L., Morris, J. L., Rush, C. M. & Ketheesan, N. Migration of dendritic cells facilitates systemic dissemination of Burkholderia pseudomallei. Infect. Immun. 82, 4233–4240 (2014).

    PubMed  PubMed Central  Google Scholar 

  87. Newland, R. C. Chronic melioidosis: a case in Sydney. Pathology 1, 149–152 (1969).

    CAS  PubMed  Google Scholar 

  88. Chodimella, U., Hoppes, W. L., Whalen, S., Ognibene, A. J. & Rutecki, G. W. Septicemia and suppuration in a Vietnam veteran. Hosp. Pract. 32, 219–221 (1997).

    CAS  Google Scholar 

  89. Gee, J. E. et al. Phylogeography of Burkholderia pseudomallei Isolates, Western Hemisphere. Emerg. Infect. Dis. 23, 1133–1138 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Gan, Y. H. Interaction between Burkholderia pseudomallei and the host immune response: sleeping with the enemy? J. Infect. Dis. 192, 1845–1850 (2005).

    CAS  PubMed  Google Scholar 

  91. Vasu, C., Vadivelu, J. & Puthucheary, S. D. The humoral immune response in melioidosis patients during therapy. Infection 31, 24–30 (2003).

    CAS  PubMed  Google Scholar 

  92. Vadivelu, J. et al. Survival and intra-nuclear trafficking of Burkholderia pseudomallei : strategies of evasion from immune surveillance? PLoS Negl Trop. Dis. 11, e0005241 (2017).

    PubMed  PubMed Central  Google Scholar 

  93. Welkos, S. L. et al. Characterization of Burkholderia pseudomallei strains using a murine intraperitoneal infection model and in vitro macrophage assays. PLoS ONE 10, e0124667 (2015).

    PubMed  PubMed Central  Google Scholar 

  94. Lewis, E. R. & Torres, A. G. The art of persistence-the secrets to Burkholderia chronic infections. Pathog. Dis. 74, ftw070 (2016).

    PubMed  PubMed Central  Google Scholar 

  95. Otsuka, Y. Prokaryotic toxin-antitoxin systems: novel regulations of the toxins. Curr. Genet. 62, 379–382 (2016).

    CAS  PubMed  Google Scholar 

  96. Hamad, M. A. et al. Adaptation and antibiotic tolerance of anaerobic Burkholderia pseudomallei. Antimicrob. Agents Chemother. 55, 3313–3323 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Hayden, H. S. et al. Evolution of Burkholderia pseudomallei in recurrent melioidosis. PLoS ONE 7, e36507 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Price, E. P. et al. Within-host evolution of Burkholderia pseudomallei over a twelve-year chronic carriage infection. mBio 4, e00388-13 (2013).

    PubMed  PubMed Central  Google Scholar 

  99. Nuntayanuwat, S., Dharakul, T., Chaowagul, W. & Songsivilai, S. Polymorphism in the promoter region of tumor necrosis factor-alpha gene is associated with severe meliodosis. Hum. Immunol. 60, 979–983 (1999).

    CAS  PubMed  Google Scholar 

  100. West, T. E. et al. Toll-like receptor 4 region genetic variants are associated with susceptibility to melioidosis. Genes Immun. 13, 38–46 (2012).

    CAS  PubMed  Google Scholar 

  101. Chantratita, N. et al. Screen of whole blood responses to flagellin identifies TLR5 variation associated with outcome in melioidosis. Genes Immun. 15, 63–71 (2014).

    CAS  PubMed  Google Scholar 

  102. West, T. E. et al. NLRC4 and TLR5 each contribute to host defense in respiratory melioidosis. PLoS Negl. Trop. Dis. 8, e3178 (2014).

    PubMed  PubMed Central  Google Scholar 

  103. Grube, M. et al. TLR5 stop codon polymorphism is associated with invasive aspergillosis after allogeneic stem cell transplantation. Med. Mycol. 51, 818–825 (2013).

    CAS  PubMed  Google Scholar 

  104. Egan, A. M. & Gordon, D. L. Burkholderia pseudomallei activates complement and is ingested but not killed by polymorphonuclear leukocytes. Infect. Immun. 64, 4952–4959 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Ceballos-Olvera, I., Sahoo, M., Miller, M. A., Del Barrio, L. & Re, F. Inflammasome-dependent pyroptosis and IL-18 protect against Burkholderia pseudomallei lung infection while IL-1beta is deleterious. PLoS Pathog. 7, e1002452 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Easton, A., Haque, A., Chu, K., Lukaszewski, R. & Bancroft, G. J. A critical role for neutrophils in resistance to experimental infection with Burkholderia pseudomallei. J. Infect. Dis. 195, 99–107 (2007).

    CAS  PubMed  Google Scholar 

  107. Wiersinga, W. J., Wieland, C. W., Roelofs, J. J. & van der Poll, T. MyD88 dependent signaling contributes to protective host defense against Burkholderia pseudomallei. PLoS ONE 3, e3494 (2008).

    PubMed  PubMed Central  Google Scholar 

  108. Wiersinga, W. J. et al. Toll-like receptor 2 impairs host defense in gram-negative sepsis caused by Burkholderia pseudomallei (Melioidosis). PLoS Med. 4, e248 (2007). This is the first in-depth investigation of the expression and function of TLRs in human and murine melioidosis.

    PubMed  PubMed Central  Google Scholar 

  109. Hii, C. S. et al. Interleukin-8 induction by Burkholderia pseudomallei can occur without Toll-like receptor signaling but requires a functional type III secretion system. J. Infect. Dis. 197, 1537–1547 (2008).

    CAS  PubMed  Google Scholar 

  110. Wiersinga, W. J. et al. CD14 impairs host defense against gram-negative sepsis caused by Burkholderia pseudomallei in mice. J. Infect. Dis. 198, 1388–1397 (2008).

    CAS  PubMed  Google Scholar 

  111. Novem, V. et al. Structural and biological diversity of lipopolysaccharides from Burkholderia pseudomallei and Burkholderia thailandensis. Clin. Vaccine Immunol. 16, 1420–1428 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Korneev, K. V. et al. Structural Relationship of the Lipid A Acyl Groups to Activation of Murine Toll-Like Receptor 4 by Lipopolysaccharides from Pathogenic Strains of Burkholderia mallei. Acinetobacter baumannii, and Pseudomonas aeruginosa. Front. Immunol. 6, 595 (2015).

    PubMed  PubMed Central  Google Scholar 

  113. Weehuizen, T. A. et al. Differential Toll-like receptor-signalling of Burkholderia pseudomallei lipopolysaccharide in murine and human models. PLoS ONE 10, e0145397 (2015).

    PubMed  PubMed Central  Google Scholar 

  114. Teh, B. E. et al. Type three secretion system-mediated escape of Burkholderia pseudomallei into the host cytosol is critical for the activation of NFκB. BMC Microbiol. 14, 115 (2014).

    PubMed  PubMed Central  Google Scholar 

  115. Bast, A. et al. Caspase-1-dependent and -independent cell death pathways in Burkholderia pseudomallei infection of macrophages. PLoS Pathog. 10, e1003986 (2014).

    PubMed  PubMed Central  Google Scholar 

  116. Wiersinga, W. J. et al. Endogenous interleukin-18 improves the early antimicrobial host response in severe melioidosis. Infect. Immun. 75, 3739–3746 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Wiersinga, W. J. et al. High-throughput mRNA profiling characterizes the expression of inflammatory molecules in sepsis caused by Burkholderia pseudomallei. Infect. Immun. 75, 3074–3079 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Lauw, F. N. et al. Elevated plasma concentrations of interferon (IFN)-gamma and the IFN-gamma-inducing cytokines interleukin (IL)-18, IL-12, and IL-15 in severe melioidosis. J. Infect. Dis. 180, 1878–1885 (1999).

    CAS  PubMed  Google Scholar 

  119. Barnes, J. L. et al. Adaptive immunity in melioidosis: a possible role for T cells in determining outcome of infection with Burkholderia pseudomallei. Clin. Immunol. 113, 22–28 (2004).

    CAS  PubMed  Google Scholar 

  120. Ulett, G. C., Ketheesan, N. & Hirst, R. G. Macrophage-lymphocyte interactions mediate anti-Burkholderia pseudomallei activity. FEMS Immunol. Med. Microbiol. 21, 283–286 (1998).

    CAS  PubMed  Google Scholar 

  121. Jenjaroen, K. et al. T-Cell responses are associated with survival in acute melioidosis patients. PLoS Negl. Trop. Dis. 9, e0004152 (2015).

    PubMed  PubMed Central  Google Scholar 

  122. Aschenbroich, S. A., Lafontaine, E. R. & Hogan, R. J. Melioidosis and glanders modulation of the innate immune system: barriers to current and future vaccine approaches. Expert Rev. Vaccines 15, 1163–1181 (2016).

    CAS  PubMed  Google Scholar 

  123. Wong, K. T., Puthucheary, S. D. & Vadivelu, J. The histopathology of human melioidosis. Histopathology 26, 51–55 (1995).

    CAS  PubMed  Google Scholar 

  124. Taramasso, L., Tatarelli, P. & Di Biagio, A. Bloodstream infections in HIV-infected patients. Virulence 7, 320–328 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Chierakul, W. et al. Short report: disease severity and outcome of melioidosis in HIV coinfected individuals. Am. J. Trop. Med. Hyg. 73, 1165–1166 (2005).

    PubMed  Google Scholar 

  126. Gordon, M. A. et al. Primary macrophages from HIV-infected adults show dysregulated cytokine responses to Salmonella, but normal internalization and killing. AIDS 21, 2399–2408 (2007).

    CAS  PubMed  Google Scholar 

  127. Haque, A. et al. Role of T cells in innate and adaptive immunity against murine Burkholderia pseudomallei infection. J. Infect. Dis. 193, 370–379 (2006).

    PubMed  Google Scholar 

  128. Simpson, A. J. et al. Prognostic value of cytokine concentrations (tumor necrosis factor-alpha, interleukin-6, and interleukin-10) and clinical parameters in severe melioidosis. J. Infect. Dis. 181, 621–625 (2000).

    CAS  PubMed  Google Scholar 

  129. Lauw, F. N. et al. The CXC chemokines gamma interferon (IFN-gamma)-inducible protein 10 and monokine induced by IFN-gamma are released during severe melioidosis. Infect. Immun. 68, 3888–3893 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Barnes, J. L., Williams, N. L. & Ketheesan, N. Susceptibility to Burkholderia pseudomallei is associated with host immune responses involving tumor necrosis factor receptor-1 (TNFR1) and TNF receptor-2 (TNFR2). FEMS Immunol. Med. Microbiol. 52, 379–388 (2008).

    CAS  PubMed  Google Scholar 

  131. Ekchariyawat, P. et al. Expression of suppressor of cytokine signaling 3 (SOCS3) and cytokine-inducible Src homology 2-containing protein (CIS) induced in Burkholderia pseudomallei—infected mouse macrophages requires bacterial internalization. Microb. Pathog. 42, 104–110 (2007).

    CAS  PubMed  Google Scholar 

  132. Massey, S. et al. Comparative Burkholderia pseudomallei natural history virulence studies using an aerosol murine model of infection. Sci. Rep. 4, 4305 (2014).

    PubMed  PubMed Central  Google Scholar 

  133. Wiersinga, W. J. et al. Expression and function of macrophage migration inhibitory factor (MIF) in melioidosis. PLoS Negl. Trop. Dis. 4, e605 (2010).

    PubMed  PubMed Central  Google Scholar 

  134. Charoensup, J. et al. High HMGB1 level is associated with poor outcome of septicemic melioidosis. Int. J. Infect. Dis. 28, 111–116 (2014).

    CAS  PubMed  Google Scholar 

  135. Doker, T. J. et al. Fatal Burkholderia pseudomallei infection initially reported as a Bacillus species, Ohio, 2013. Am. J. Trop. Med. Hyg. 91, 743–746 (2014).

    PubMed  PubMed Central  Google Scholar 

  136. Currie, B. J., Fisher, D. A., Anstey, N. M. & Jacups, S. P. Melioidosis: acute and chronic disease, relapse and re-activation. Trans. R. Soc. Trop. Med. Hyg. 94, 301–304 (2000).

    CAS  PubMed  Google Scholar 

  137. Chierakul, W. et al. Melioidosis in 6 tsunami survivors in southern Thailand. Clin. Infect. Dis. 41, 982–990 (2005).

    PubMed  Google Scholar 

  138. Hoffmaster, A. R. et al. Melioidosis diagnostic workshop, 2013. Emerg. Infect. Dis.https://doi.org/10.3201/eid2102.141045 (2015). This is a CDC workshop paper involving the efforts of a large working group to update the diagnosis for melioidosis.

  139. Centers for Disease Control and Prevention. Federal Select Agent Programhttps://www.selectagents.gov/ (2017).

  140. Wuthiekanun, V., Suputtamongkol, Y., Simpson, A. J., Kanaphun, P. & White, N. J. Value of throat swab in diagnosis of melioidosis. J. Clin. Microbiol. 39, 3801–3802 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Cheng, A. C. et al. Role of selective and nonselective media for isolation of Burkholderia pseudomallei from throat swabs of patients with melioidosis. J. Clin. Microbiol. 44, 2316 (2006).

    PubMed  PubMed Central  Google Scholar 

  142. Limmathurotsakul, D. et al. Role and significance of quantitative urine cultures in diagnosis of melioidosis. J. Clin. Microbiol. 43, 2274–2276 (2005).

    PubMed  PubMed Central  Google Scholar 

  143. Dance, D. A. B., Limmathurotsakul, D. & Currie, B. J. Burkholderia pseudomallei: challenges for the clinical microbiology laboratory — a response from the front line. J. Clin. Microbiol. 55, 980–982 (2017).

    PubMed  PubMed Central  Google Scholar 

  144. Podin, Y. et al. Burkholderia pseudomallei isolates from Sarawak, Malaysian Borneo, are predominantly susceptible to aminoglycosides and macrolides. Antimicrob. Agents Chemother. 58, 162–166 (2014).

    PubMed  PubMed Central  Google Scholar 

  145. Limmathurotsakul, D. et al. Defining the true sensitivity of culture for the diagnosis of melioidosis using Bayesian latent class models. PLoS ONE 5, e12485 (2010).

    PubMed  PubMed Central  Google Scholar 

  146. Duval, B. D. et al. Evaluation of a latex agglutination assay for the identification of Burkholderia pseudomallei and Burkholderia mallei. Am. J. Trop. Med. Hyg. 90, 1043–1046 (2014).

    PubMed  PubMed Central  Google Scholar 

  147. Suttisunhakul, V. et al. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the identification of Burkholderia pseudomallei from Asia and Australia and differentiation between Burkholderia species. PLoS ONE 12, e0175294 (2017).

    PubMed  PubMed Central  Google Scholar 

  148. Gee, J. E. et al. Use of 16S rRNA gene sequencing for rapid identification and differentiation of Burkholderia pseudomallei and B. mallei. J. Clin. Microbiol. 41, 4647–4654 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Koh, S. F. et al. Development of a multiplex PCR assay for rapid identification of Burkholderia pseudomallei, Burkholderia thailandensis, Burkholderia mallei and Burkholderia cepacia complex. J. Microbiol. Methods 90, 305–308 (2012).

    CAS  PubMed  Google Scholar 

  150. Sheridan, E. A. et al. Evaluation of the Wayson stain for the rapid diagnosis of melioidosis. J. Clin. Microbiol. 45, 1669–1670 (2007).

    PubMed  PubMed Central  Google Scholar 

  151. Tandhavanant, S. et al. Monoclonal antibody-based immunofluorescence microscopy for the rapid identification of Burkholderia pseudomallei in clinical specimens. Am. J. Trop. Med. Hyg. 89, 165–168 (2013).

    PubMed  PubMed Central  Google Scholar 

  152. Houghton, R. L. et al. Development of a prototype lateral flow immunoassay (LFI) for the rapid diagnosis of melioidosis. PLoS Negl. Trop. Dis. 8, e2727 (2014).

    PubMed  PubMed Central  Google Scholar 

  153. Robertson, G. et al. Rapid diagnostics for melioidosis: a comparative study of a novel lateral flow antigen detection assay. J. Med. Microbiol. 64, 845–848 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Kaestli, M. et al. Comparison of TaqMan PCR assays for detection of the melioidosis agent Burkholderia pseudomallei in clinical specimens. J. Clin. Microbiol. 50, 2059–2062 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Richardson, L. J. et al. Towards a rapid molecular diagnostic for melioidosis: comparison of DNA extraction methods from clinical specimens. J. Microbiol. Methods 88, 179–181 (2012).

    CAS  PubMed  Google Scholar 

  156. Chaowagul, W. et al. Melioidosis: a major cause of community-acquired septicemia in northeastern Thailand. J. Infect. Dis. 159, 890–899 (1989).

    CAS  PubMed  Google Scholar 

  157. Cheng, A. C. et al. Prospective evaluation of a rapid immunochromogenic cassette test for the diagnosis of melioidosis in northeast Thailand. Trans. R. Soc. Trop. Med. Hyg. 100, 64–67 (2006).

    CAS  PubMed  Google Scholar 

  158. Cheng, A. C., O’Brien, M., Freeman, K., Lum, G. & Currie, B. J. Indirect hemagglutination assay in patients with melioidosis in northern Australia. Am. J. Trop. Med. Hyg. 74, 330–334 (2006).

    PubMed  Google Scholar 

  159. Pumpuang, A. et al. Comparison of O-polysaccharide and hemolysin co-regulated protein as target antigens for serodiagnosis of melioidosis. PLoS Negl. Trop. Dis. 11, e0005499 (2017).

    PubMed  PubMed Central  Google Scholar 

  160. Suttisunhakul, V. et al. Development of rapid enzyme-linked immunosorbent assays for detection of antibodies to Burkholderia pseudomallei. J. Clin. Microbiol. 54, 1259–1268 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Suttisunhakul, V. et al. Evaluation of polysaccharide-based latex agglutination assays for the rapid detection of antibodies to Burkholderia pseudomallei. Am. J. Trop. Med. Hyg. 93, 542–546 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Kohler, C. et al. Rapid and sensitive multiplex detection of Burkholderia pseudomallei-specific antibodies in melioidosis patients based on a protein microarray approach. PLoS Negl. Trop. Dis. 10, e0004847 (2016).

    PubMed  PubMed Central  Google Scholar 

  163. Boyd, R., McGuiness, S., Draper, A. D., Neilson, M. & Krause, V. Melioidosis awareness campaign.... Don't get melioidosis. Northern Territory Dis. Control Bull. 23, 1–6 (2016).

    Google Scholar 

  164. Howard, K. & Inglis, T. J. The effect of free chlorine on Burkholderia pseudomallei in potable water. Water Res. 37, 4425–4432 (2003).

    CAS  PubMed  Google Scholar 

  165. McRobb, E. et al. Melioidosis from contaminated bore water and successful UV sterilization. Am. J. Trop. Med. Hyg. 89, 367–368 (2013).

    PubMed  PubMed Central  Google Scholar 

  166. Suntornsut, P. et al. Barriers and recommended interventions to prevent melioidosis in Northeast Thailand: a focus group study using the behaviour change wheel. PLoS Negl. Trop. Dis. 10, e0004823 (2016).

    PubMed  PubMed Central  Google Scholar 

  167. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT02089152 (2016).

  168. Lipsitz, R. et al. Workshop on treatment of and postexposure prophylaxis for Burkholderia pseudomallei and B. mallei Infection, 2010. Emerg. Infect. Dis. 18, e2 (2012). This is a CDC workshop paper involving the efforts of a large working group to update the treatment for melioidosis.

    PubMed  PubMed Central  Google Scholar 

  169. Crowe, A., McMahon, N., Currie, B. J. & Baird, R. W. Current antimicrobial susceptibility of first-episode melioidosis Burkholderia pseudomallei isolates from the Northern Territory. Australia. Int. J. Antimicrob. Agents 44, 160–162 (2014).

    CAS  PubMed  Google Scholar 

  170. Dance, D. A. et al. Trimethoprim/sulfamethoxazole resistance in Burkholderia pseudomallei. Int. J. Antimicrob. Agents 44, 368–369 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Saiprom, N. et al. Trimethoprim/sulfamethoxazole resistance in clinical isolates of Burkholderia pseudomallei from Thailand. Int. J. Antimicrob. Agents 45, 557–559 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Chaowagul, W., Simpson, A. J., Suputtamongkol, Y. & White, N. J. Empirical cephalosporin treatment of melioidosis. Clin. Infect. Dis. 28, 1328 (1999).

    CAS  PubMed  Google Scholar 

  173. Dance, D. Treatment and prophylaxis of melioidosis. Int. J. Antimicrob. Agents 43, 310–318 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Harris, P., Engler, C. & Norton, R. Comparative in vitro susceptibility of Burkholderia pseudomallei to doripenem, ertapenem, tigecycline and moxifloxacin. Int. J. Antimicrob. Agents 37, 547–549 (2011).

    CAS  PubMed  Google Scholar 

  175. Ashdown, L. R. Nosocomial infection due to Pseudomonas pseudomallei: two cases and an epidemiologic study. Rev. Infect. Dis. 1, 891–894 (1979).

    CAS  PubMed  Google Scholar 

  176. Markovitz, A. Inoculation by bronchoscopy. West. J. Med. 131, 550 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Kelen, G. D., Hansen, K. N., Green, G. B., Tang, N. & Ganguli, C. Determinants of emergency department procedure- and condition-specific universal (barrier) precaution requirements for optimal provider protection. Ann. Emerg. Med. 25, 743–750 (1995).

    CAS  PubMed  Google Scholar 

  178. Pittet, D., Allegranzi, B., Boyce, J. & World Health Organization World Alliance for Patient Safety First Global Patient Safety Challenge Core Group of Experts. The World Health Organization guidelines on hand hygiene in health care and their consensus recommendations. Infect. Control Hosp. Epidemiol. 30, 611–622 (2009).

    PubMed  Google Scholar 

  179. White, N. J. et al. Halving of mortality of severe melioidosis by ceftazidime. Lancet 2, 697–701 (1989).

    CAS  PubMed  Google Scholar 

  180. Simpson, A. J. et al. Comparison of imipenem and ceftazidime as therapy for severe melioidosis. Clin. Infect. Dis. 29, 381–387 (1999).

    CAS  PubMed  Google Scholar 

  181. Chierakul, W. et al. Two randomized controlled trials of ceftazidime alone versus ceftazidime in combination with trimethoprim-sulfamethoxazole for the treatment of severe melioidosis. Clin. Infect. Dis. 41, 1105–1113 (2005).

    CAS  PubMed  Google Scholar 

  182. Chierakul, W. et al. Addition of trimethoprim-sulfamethoxazole to ceftazidime during parenteral treatment of melioidosis is not associated with a long-term outcome benefit. Clin. Infect. Dis. 45, 521–523 (2007).

    PubMed  Google Scholar 

  183. Smith, M. D., Wuthiekanun, V., Walsh, A. L. & White, N. J. Susceptibility of Pseudomonas pseudomallei to some newer beta-lactam antibiotics and antibiotic combinations using time-kill studies. J. Antimicrob. Chemother. 33, 145–149 (1994).

    CAS  PubMed  Google Scholar 

  184. Smith, M. D., Wuthiekanun, V., Walsh, A. L. & White, N. J. In vitro activity of carbapenem antibiotics against beta-lactam susceptible and resistant strains of Burkholderia pseudomallei. J. Antimicrob. Chemother. 37, 611–615 (1996).

    CAS  PubMed  Google Scholar 

  185. Cheng, A. C. et al. Outcomes of patients with melioidosis treated with meropenem. Antimicrob. Agents Chemother. 48, 1763–1765 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Cheng, A. C. et al. Dosing regimens of cotrimoxazole (trimethoprim-sulfamethoxazole) for melioidosis. Antimicrob. Agents Chemother. 53, 4193–4199 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Cheng, A. C. et al. Consensus guidelines for dosing of amoxicillin-clavulanate in melioidosis. Am. J. Trop. Med. Hyg. 78, 208–209 (2008).

    PubMed  PubMed Central  Google Scholar 

  188. Pitman, M. C. et al. Intravenous therapy duration and outcomes in melioidosis: a new treatment paradigm. PLoS Negl. Trop. Dis. 9, e0003586 (2015).

    PubMed  PubMed Central  Google Scholar 

  189. Chaowagul, W. et al. Relapse in melioidosis: incidence and risk factors. J. Infect. Dis. 168, 1181–1185 (1993).

    CAS  PubMed  Google Scholar 

  190. Limmathurotsakul, D. et al. Risk factors for recurrent melioidosis in northeast Thailand. Clin. Infect. Dis. 43, 979–986 (2006).

    PubMed  Google Scholar 

  191. Limmathurotsakul, D. et al. A simple scoring system to differentiate between relapse and re-infection in patients with recurrent melioidosis. PLoS Negl. Trop. Dis. 2, e327 (2008).

    PubMed  PubMed Central  Google Scholar 

  192. Lumbiganon, P., Chotechuangnirun, N., Kosalaraksa, P. & Teeratakulpisarn, J. Localized melioidosis in children in Thailand: treatment and long-term outcome. J. Trop. Pediatr. 57, 185–191 (2011).

    PubMed  Google Scholar 

  193. Pagnarith, Y. et al. Emergence of pediatric melioidosis in Siem Reap, Cambodia. Am. J. Trop. Med. Hyg. 82, 1106–1112 (2010).

    PubMed  PubMed Central  Google Scholar 

  194. Morse, L. P. et al. Osteomyelitis and septic arthritis from infection with Burkholderia pseudomallei: a 20-year prospective melioidosis study from northern Australia. J. Orthop. 10, 86–91 (2013).

    PubMed  PubMed Central  Google Scholar 

  195. Shetty, R. P. et al. Management of melioidosis osteomyelitis and septic arthritis. Bone Joint J. 97-B, 277–282 (2015).

    CAS  PubMed  Google Scholar 

  196. Cheng, A. C., West, T. E., Limmathurotsakul, D. & Peacock, S. J. Strategies to reduce mortality from bacterial sepsis in adults in developing countries. PLoS Med. 5, e175 (2008).

    PubMed  PubMed Central  Google Scholar 

  197. Stephens, D. P., Thomas, J. H., Ward, L. M. & Currie, B. J. Melioidosis causing critical illness: a review of 24 years of experience from the Royal Darwin Hospital ICU. Crit. Care Med. 44, 1500–1505 (2016).

    PubMed  Google Scholar 

  198. Rhodes, A. et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 43, 304–377 (2017).

    PubMed  Google Scholar 

  199. Cheng, A. C., Stephens, D. P., Anstey, N. M. & Currie, B. J. Adjunctive granulocyte colony-stimulating factor for treatment of septic shock due to melioidosis. Clin. Infect. Dis. 38, 32–37 (2004).

    CAS  PubMed  Google Scholar 

  200. Cheng, A. C. et al. A randomized controlled trial of granulocyte colony-stimulating factor for the treatment of severe sepsis due to melioidosis in Thailand. Clin. Infect. Dis. 45, 308–314 (2007).

    CAS  PubMed  Google Scholar 

  201. Weehuizen, T. A. et al. Therapeutic administration of a monoclonal anti-Il-1beta antibody protects against experimental melioidosis. Shock 46, 566–574 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Koh, G. C. et al. Glyburide is anti-inflammatory and associated with reduced mortality in melioidosis. Clin. Infect. Dis. 52, 717–725 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Sarovich, D. S. et al. Recurrent melioidosis in the Darwin Prospective Melioidosis Study: improving therapies mean that relapse cases are now rare. J. Clin. Microbiol. 52, 650–653 (2014).

    PubMed  PubMed Central  Google Scholar 

  204. Teparrakkul, P. et al. Rheumatological manifestations in patients with melioidosis. Southeast Asian J. Trop. Med. Publ. Health 39, 649–655 (2008).

    CAS  Google Scholar 

  205. Molyneux, D. H., Savioli, L. & Engels, D. Neglected tropical diseases: progress towards addressing the chronic pandemic. Lancet 389, 312–325 (2017).

    PubMed  Google Scholar 

  206. Teerawattanasook, N. et al. Capacity and utilisation of blood culture in two referral hospitals in Indonesia and Thailand. Am. J. Trop. Med. Hyg. 97, 1257–1261 (2017).

    PubMed  PubMed Central  Google Scholar 

  207. Skvarc, M., Stubljar, D., Rogina, P. & Kaasch, A. J. Non-culture-based methods to diagnose bloodstream infection: Does it work? Eur. J. Microbiol. Immunol. 3, 97–104 (2013).

    Google Scholar 

  208. Paek, S. C., Meemon, N. & Wan, T. T. Thailand's universal coverage scheme and its impact on health-seeking behavior. Springerplus 5, 1952 (2016).

    PubMed  PubMed Central  Google Scholar 

  209. van Dijk, D. P., Dinant, G. & Jacobs, J. A. Inappropriate drug donations: what has happened since the 1999 WHO guidelines? Educ. Health 24, 462 (2011).

    CAS  Google Scholar 

  210. Schweizer, H. P., Tuanyok, A. & Bertherat, E. Eighth World Melioidosis Congress, 2016: presenting an emerging infectious disease in the context of “One Health”. Wkly Epidemiol. Rec. 91, 543–547 (2016).

    Google Scholar 

  211. Gibbs, P. Origins of One Health and One Medicine. Vet. Rec. 174, 152 (2014).

    PubMed  Google Scholar 

  212. Peacock, S. J. et al. Melioidosis vaccines: a systematic review and appraisal of the potential to exploit biodefense vaccines for public health purposes. PLoS Negl. Trop. Dis. 6, e1488 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Limmathurotsakul, D. et al. Consensus on the development of vaccines against naturally acquired melioidosis. Emerg. Infect. Dis.https://doi.org/10.3201/eid2106.141480 (2015).

  214. Sarkar-Tyson, M. & Titball, R. W. Progress toward development of vaccines against melioidosis: A review. Clin. Ther. 32, 1437–1445 (2010).

    CAS  PubMed  Google Scholar 

  215. Patel, N. et al. Development of vaccines against Burkholderia pseudomallei. Front. Microbiol. 2, 198 (2011).

    PubMed  PubMed Central  Google Scholar 

  216. Torres, A. G. et al. Protection of non-human primates against glanders with a gold nanoparticle glycoconjugate vaccine. Vaccine 33, 686–692 (2015).

    CAS  PubMed  Google Scholar 

  217. Muruato, L. A. & Torres, A. G. Melioidosis: where do we stand in the development of an effective vaccine? Future Microbiol. 11, 477–480 (2016).

    CAS  PubMed  Google Scholar 

  218. Lankelma, J. M. et al. The gut microbiota as a modulator of innate immunity during melioidosis. PLoS Negl. Trop. Dis. 11, e0005548 (2017).

    PubMed  PubMed Central  Google Scholar 

  219. van Crevel, R., van de Vijver, S. & Moore, D. A. J. The global diabetes epidemic: what does it mean for infectious diseases in tropical countries? Lancet Diabetes Endocrinol. 5, 457–468 (2017).

    PubMed  Google Scholar 

  220. Cheng, A. C., Jacups, S. P., Gal, D., Mayo, M. & Currie, B. J. Extreme weather events and environmental contamination are associated with case-clusters of melioidosis in the Northern Territory of Australia. Int. J. Epidemiol. 35, 323–329 (2006).

    PubMed  Google Scholar 

  221. Liu, C. L., Huang, J. J., Lin, H. C., Huang, S. T. & Liu, D. P. Investigation and analysis of melioidosis outbreak after Typhoon Nanmadol in Southern Taiwan, 2011. Int. J..Infect. Dis. 16, e351 (2012).

    Google Scholar 

  222. Wang, J. et al. Multiple mechanisms involved in diabetes protection by lipopolysaccharide in non-obese diabetic mice. Toxicol. Appl. Pharmacol. 285, 149–158 (2015).

    CAS  PubMed  Google Scholar 

  223. Maniam, P., Nurul Aiezzah, Z., Mohamed, R., Embi, N. & Hasidah, M. S. Regulatory role of GSK3beta in the activation of NF-kappaB and modulation of cytokine levels in Burkholderia pseudomallei-infected PBMC isolated from streptozotocin-induced diabetic animals. Trop. Biomed. 32, 36–48 (2015).

    CAS  PubMed  Google Scholar 

  224. Buddhisa, S., Rinchai, D., Ato, M., Bancroft, G. J. & Lertmemongkolchai, G. Programmed death ligand 1 on Burkholderia pseudomallei-infected human polymorphonuclear neutrophils impairs T cell functions. J. Immunol. 194, 4413–4421 (2015).

    CAS  PubMed  Google Scholar 

  225. Koh, G. C., Peacock, S. J., van der Poll, T. & Wiersinga, W. J. The impact of diabetes on the pathogenesis of sepsis. Eur. J. Clin. Microbiol. Infect. Dis. 31, 379–388 (2012).

    CAS  PubMed  Google Scholar 

  226. Liu, X. et al. Sulphonylurea usage in melioidosis is associated with severe disease and suppressed immune response. PLoS Negl. Trop. Dis. 8, e2795 (2014).

    PubMed  PubMed Central  Google Scholar 

  227. Kewcharoenwong, C. et al. Glibenclamide impairs responses of neutrophils against Burkholderia pseudomallei by reduction of intracellular glutathione. Sci. Rep. 6, 34794 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Galyov, E. E., Brett, P. J. & DeShazer, D. Molecular insights into Burkholderia pseudomallei and Burkholderia mallei pathogenesis. Annu. Rev. Microbiol. 64, 495–517 (2010). This is a review article that presents a comprehensive history of the mechanisms of pathogenesis associated with both B. pseudomallei and B. mallei (up to 2010).

    CAS  PubMed  Google Scholar 

  229. Holden, M. T. et al. Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc. Natl Acad. Sci. USA 101, 14240–14245 (2004).

    CAS  PubMed  Google Scholar 

  230. Price, E. P. et al. Within-host evolution of Burkholderia pseudomallei in four cases of acute melioidosis. PLoS Pathog. 6, e1000725 (2010).

    PubMed  PubMed Central  Google Scholar 

  231. Tumapa, S. et al. Burkholderia pseudomallei genome plasticity associated with genomic island variation. BMC Genom. 9, 190 (2008).

    Google Scholar 

  232. Chewapreecha, C. et al. Global and regional dissemination and evolution of Burkholderia pseudomallei. Nat. Microbiol. 2, 16263 (2017). This is a study in which whole-genome sequencing of 469 B. pseudomallei isolates from 30 countries maps the regional dissemination and evolution of B. pseudomallei across the globe.

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Rhodes, K. A. & Schweizer, H. P. Antibiotic resistance in Burkholderia species. Drug Resist. Updat. 28, 82–90 (2016).

    PubMed  PubMed Central  Google Scholar 

  234. Bugrysheva, J. V. et al. Antibiotic resistance markers in Burkholderia pseudomallei strain Bp1651 identified by genome sequence analysis. Antimicrob. Agents Chemother. 61, e00010-17 (2017).

    PubMed  PubMed Central  Google Scholar 

  235. Chantratita, N. et al. Antimicrobial resistance to ceftazidime involving loss of penicillin-binding protein 3 in Burkholderia pseudomallei. Proc. Natl Acad. Sci. USA 108, 17165–17170 (2011).

    CAS  PubMed  Google Scholar 

  236. Randall, L. B., Dobos, K., Papp-Wallace, K. M., Bonomo, R. A. & Schweizer, H. P. Membrane-bound PenA beta-lactamase of Burkholderia pseudomallei. Antimicrob. Agents Chemother. 60, 1509–1514 (2015).

    PubMed  Google Scholar 

  237. Price, E. P. et al. Whole-genome sequences of Burkholderia pseudomallei isolates exhibiting decreased meropenem susceptibility. Genome Announc. 5, e00053-17 (2017).

    PubMed  PubMed Central  Google Scholar 

  238. Podnecky, N. L., Wuthiekanun, V., Peacock, S. J. & Schweizer, H. P. The BpeEF-OprC efflux pump is responsible for widespread trimethoprim resistance in clinical and environmental Burkholderia pseudomallei isolates. Antimicrob. Agents Chemother. 57, 4381–4386 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Sirijant, N., Sermswan, R. W. & Wongratanacheewin, S. Burkholderia pseudomallei resistance to antibiotics in biofilm-induced conditions is related to efflux pumps. J. Med. Microbiol. 65, 1296–1306 (2016).

    CAS  PubMed  Google Scholar 

  240. Kager, L. M., van der Poll, T. & Wiersinga, W. J. The coagulation system in melioidosis: from pathogenesis to new treatment strategies. Expert Rev. Anti-Infective Ther. 12, 993–1002 (2014).

    CAS  Google Scholar 

  241. LaRosa, S. P. et al. Decreased protein C, protein S, and antithrombin levels are predictive of poor outcome in Gram-negative sepsis caused by Burkholderia pseudomallei. Int. J. Infect. Dis. 10, 25–31 (2006).

    CAS  PubMed  Google Scholar 

  242. Wiersinga, W. J. et al. Activation of coagulation with concurrent impairment of anticoagulant mechanisms correlates with a poor outcome in severe melioidosis. J. Thromb. Haemost. 6, 32–39 (2008).

    CAS  Google Scholar 

  243. Kager, L. M. et al. Overexpression of activated protein C is detrimental during severe experimental gram-negative sepsis (melioidosis). Crit. Care Med. 41, e266–274 (2013).

    CAS  PubMed  Google Scholar 

  244. Kager, L. M. et al. Plasminogen activator inhibitor type I contributes to protective immunity during experimental Gram-negative sepsis (melioidosis). J. Thromb. Haemost. 9, 2020–2028 (2011).

    CAS  Google Scholar 

  245. Kager, L. M. et al. Endogenous alpha2-antiplasmin is protective during severe gram-negative sepsis (melioidosis). Am. J. Respir. Crit. Care Med. 188, 967–975 (2013).

    CAS  PubMed  Google Scholar 

  246. Currie, B. J. Melioidosis: The 2014 Revised RDH Guideline. Northern Territory Dis. Control Bull. 21, 4–8 (2014).

    Google Scholar 

  247. Rachlin, A. et al. Investigation of recurrent melioidosis in Lao People's Democratic Republic by multilocus sequence typing. Am. J. Trop. Med. Hyg. 94, 1208–1211 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Tauran, P. M. et al. Emergence of melioidosis in Indonesia. Am. J. Trop. Med. Hyg. 93, 1160–1163 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Rothe, C. et al. Clinical Cases in Tropical Medicine (Saunders Ltd., 2014).

    Google Scholar 

  250. Lafontaine, E. R., Balder, R., Michel, F. & Hogan, R. J. Characterization of an autotransporter adhesin protein shared by Burkholderia mallei and Burkholderia pseudomallei. BMC Microbiol. 14, 92 (2014).

    PubMed  PubMed Central  Google Scholar 

  251. DeShazer, D., Brett, P. J., Carlyon, R. & Woods, D. E. Mutagenesis of Burkholderia pseudomallei with Tn5-OT182: isolation of motility mutants and molecular characterization of the flagellin structural gene. J. Bacteriol. 179, 2116–2125 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Chua, K. L., Chan, Y. Y. & Gan, Y. H. Flagella are virulence determinants of Burkholderia pseudomallei. Infect. Immun. 71, 1622–1629 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Muangsombut, V. et al. Inactivation of Burkholderia pseudomallei bsaQ results in decreased invasion efficiency and delayed escape of bacteria from endocytic vesicles. Arch. Microbiol. 190, 623–631 (2008).

    CAS  PubMed  Google Scholar 

  254. Burtnick, M. N. et al. Burkholderia pseudomallei type III secretion system mutants exhibit delayed vacuolar escape phenotypes in RAW 264.7 murine macrophages. Infect. Immun. 76, 2991–3000 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Pilatz, S. et al. Identification of Burkholderia pseudomallei genes required for the intracellular life cycle and in vivo virulence. Infect. Immun. 74, 3576–3586 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Warawa, J. & Woods, D. E. Type III secretion system cluster 3 is required for maximal virulence of Burkholderia pseudomallei in a hamster infection model. FEMS Microbiol. Lett. 242, 101–108 (2005).

    CAS  PubMed  Google Scholar 

  257. Vanaporn, M., Vattanaviboon, P., Thongboonkerd, V. & Korbsrisate, S. The rpoE operon regulates heat stress response in Burkholderia pseudomallei. FEMS Microbiol. Lett. 284, 191–196 (2008).

    CAS  PubMed  Google Scholar 

  258. Utaisincharoen, P., Arjcharoen, S., Limposuwan, K., Tungpradabkul, S. & Sirisinha, S. Burkholderia pseudomallei RpoS regulates multinucleated giant cell formation and inducible nitric oxide synthase expression in mouse macrophage cell line (RAW 264.7). Microb. Pathog. 40, 184–189 (2006).

    CAS  PubMed  Google Scholar 

  259. Leiman, P. G. et al. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc. Natl Acad. Sci. USA 106, 4154–4159 (2009).

    CAS  PubMed  Google Scholar 

  260. Basler, M., Pilhofer, M., Henderson, G. P., Jensen, G. J. & Mekalanos, J. J. Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 483, 182–186 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Burtnick, M. N. et al. The cluster 1 type VI secretion system is a major virulence determinant in Burkholderia pseudomallei. Infect. Immun. 79, 1512–1525 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  262. Chieng, S., Mohamed, R. & Nathan, S. Transcriptome analysis of Burkholderia pseudomallei T6SS identifies Hcp1 as a potential serodiagnostic marker. Microb. Pathog. 79, 47–56 (2015).

    CAS  PubMed  Google Scholar 

  263. Toesca, I. J., French, C. T. & Miller, J. F. The Type VI secretion system spike protein VgrG5 mediates membrane fusion during intercellular spread by pseudomallei group Burkholderia species. Infect. Immun. 82, 1436–1444 (2014). This is an important basic science research paper from the past decade of B. pseudomallei research.

    PubMed  PubMed Central  Google Scholar 

  264. Tan, K. S. et al. Suppression of host innate immune response by Burkholderia pseudomallei through the virulence factor TssM. J. Immunol. 184, 5160–5171 (2010).

    CAS  PubMed  Google Scholar 

  265. Reckseidler-Zenteno, S. L. et al. Characterization of the type III capsular polysaccharide produced by Burkholderia pseudomallei. J. Med. Microbiol. 59, 1403–1414 (2010).

    CAS  PubMed  Google Scholar 

  266. Woodman, M. E., Worth, R. G. & Wooten, R. M. Capsule influences the deposition of critical complement C3 levels required for the killing of Burkholderia pseudomallei via NADPH-oxidase induction by human neutrophils. PLoS ONE 7, e52276 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Mongkolrob, R., Taweechaisupapong, S. & Tungpradabkul, S. Correlation between biofilm production, antibiotic susceptibility and exopolysaccharide composition in Burkholderia pseudomallei bpsI, ppk, and rpoS mutant strains. Microbiol. Immunol. 59, 653–663 (2015).

    CAS  PubMed  Google Scholar 

  268. Norris, M. H., Schweizer, H. P. & Tuanyok, A. Structural diversity of Burkholderia pseudomallei lipopolysaccharides affects innate immune signaling. PLOS Negl Trop. Dis. 11, e0005571 (2017).

    PubMed  PubMed Central  Google Scholar 

  269. Ulrich, R. L. et al. Role of quorum sensing in the pathogenicity of Burkholderia pseudomallei. J. Med. Microbiol. 53, 1053–1064 (2004).

    CAS  PubMed  Google Scholar 

  270. Chan, Y. Y. & Chua, K. L. The Burkholderia pseudomallei BpeAB-OprB efflux pump: expression and impact on quorum sensing and virulence. J. Bacteriol. 187, 4707–4719 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  271. Cruz, A. et al. A Burkholderia pseudomallei toxin inhibits helicase activity of translation factor eIF4A. Science 334, 821–824 (2011).

    Google Scholar 

  272. Walsh, M. J., Dodd, J. E. & Hautbergue, G. M. Ribosome-inactivating proteins: potent poisons and molecular tools. Virulence 4, 774–784 (2013).

    PubMed  PubMed Central  Google Scholar 

  273. Chantratita, N. et al. Biological relevance of colony morphology and phenotypic switching by Burkholderia pseudomallei. J. Bacteriol. 189, 807–817 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

W.J.W. received a Vidi grant (91716475) from the Netherlands Organisation for Scientific Research (NWO) and Marie Curie Skledowska Innovative Training Network (MC-ITN) European Sepsis Academy, funded by the European Union's Horizon 2020 programme. H.S.V. received a Marie Curie Skledowska fellowship under the European Sepsis Academy, funded by the European Union's Horizon 2020 programme. A.G.T. is supported by the NIH and the National Institute of Allergy and Infectious Diseases (NIAID) R01 grant AI12660101. B.J.C. is supported by Australian National Health and Medical Research Council grants, including the HOT NORTH initiative. S.J.P. is an NIH Research Senior Investigator. D.A.B.D. is supported by The Wellcome Trust of Great Britain (grant number 106698/Z/14/Z). D.L. is supported by The Wellcome Trust Public Health and Tropical Medicine Intermediate Fellowship (grant number 101103/Z/13/Z). The authors thank G. Wongsuvan, P. Amornchai, P. Wannapinij and V. Wuthiekanun for their assistance with the images in Fig. 5.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (H.S.V. and W.J.W.); Epidemiology (D.L. and D.A.B.D.); Mechanisms/pathophysiology (H.S.V., W.J.W., A.G.T. and S.J.P.); Diagnosis, screening and prevention (D.A.B.D., D.L. and B.J.C.); Management (B.J.C.); Quality of life (B.J.C.); Outlook (A.G.T., H.S.V., D.A.B.D., D.L. and W.J.W.); Overview of Primer (all authors).

Corresponding authors

Correspondence to W. Joost Wiersinga or Direk Limmathurotsakul.

Ethics declarations

Competing interests

D.A.B.D. acted as a consultant to Soligenix, Inc. All other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiersinga, W., Virk, H., Torres, A. et al. Melioidosis. Nat Rev Dis Primers 4, 17107 (2018). https://doi.org/10.1038/nrdp.2017.107

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nrdp.2017.107

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing