Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Correspondence
  • Published:

The Turing mechanism in vertebrate limb patterning

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Tickle, C. Making digit patterns in the vertebrate limb. Nature Rev. Mol. Cell Biol. 7, 45–53 (2006).

    Article  CAS  Google Scholar 

  2. Turing, A. The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237, 37–72 (1952).

    Article  Google Scholar 

  3. Wolpert, L. Positional information revisited. Development 107, 3–12 (1989).

    PubMed  Google Scholar 

  4. Newman, S. A. & Frisch, H. L. Dynamics of skeletal pattern formation in developing chick limb. Science 205, 662–668 (1979).

    Article  CAS  Google Scholar 

  5. Miura, T. & Shiota, K. Extracellular matrix environment influences chondrogenic pattern formation in limb bud micromass culture: experimental verification of theoretical models. Anat. Rec. 258, 100–107 (2000).

    Article  CAS  Google Scholar 

  6. Miura, T. & Shiota, K. TGFβ2 acts as an 'activator' molecule in reaction–diffusion model and is involved in cell sorting phenomenon in mouse limb micromass culture. Dev. Dyn. 217, 241–249 (2000).

    Article  CAS  Google Scholar 

  7. Moftah, M. Z. et al. Ectodermal FGFs induce perinodular inhibition of limb chondrogenesis in vitro and in vivo via FGF receptor 2. Dev. Biol. 249, 270–282 (2002).

    Article  CAS  Google Scholar 

  8. Miura, T. & Maini, P. K. Speed of pattern appearance in reaction–diffusion models: implications in the pattern formation of limb bud mesenchyme cells. Bull. Math. Biol. 66, 627–649 (2004).

    Article  Google Scholar 

  9. Miura, T., Shiota, K., Morriss-Kay, G. & Maini, P. K. Mixed-mode pattern in doublefoot mutant mouse limb — Turing reaction–diffusion model on a growing domain during limb development. J. Theor. Biol. 240, 562–573 (2006).

    Article  Google Scholar 

  10. Forgacs, G. & Newman, S. A. Biological Physics of the Developing Embryo (Cambridge Univ. Press, Cambridge, 2005).

    Book  Google Scholar 

  11. Hentschel, H. G., Glimm, T., Glazier, J. A. & Newman, S. A. Dynamical mechanisms for skeletal pattern formation in the vertebrate limb. Proc. R. Soc. Lond. B. 271, 1713–1722 (2004).

    Article  CAS  Google Scholar 

  12. Chaturvedi, R. et al. On multiscale approaches to three-dimensional modelling of morphogenesis. J. R. Soc. Interface 2, 237–253 (2005).

    Article  CAS  Google Scholar 

  13. Cickovski, T. et al. A framework for three-dimensional simulation of morphogenesis. IEEE/ACM Trans. Comput. Biol. Bioinform. 2, 273–288 (2005).

    Article  Google Scholar 

  14. Christley, S., Alber, M. S. and Newman, S. A. Patterns of mesenchymal condensation in a multiscale, discrete stochastic model. PLoS Comput. Biol. 3, e76 (2007).

    Article  Google Scholar 

  15. Alber, M., Hentschel, H. G. E., Kazmierczak, B. & Newman, S. A. Existence of solutions to a new model of biological pattern formation. J. Math. Anal. Appl. 308, 175–194 (2005).

    Article  Google Scholar 

  16. Maini, P. K., Baker, R. E. & Chuong, C. M. Developmental biology. The Turing model comes of molecular age. Science 314, 1397–1398 (2006).

    Article  CAS  Google Scholar 

  17. Sick, S., Reinker, S., Timmer, J. & Schlake, T. WNT and DKK determine hair follicle spacing through a reaction–diffusion mechanism. Science 314, 1447–1450 (2006).

    Article  CAS  Google Scholar 

  18. Jiang, T. X. et al. Integument pattern formation involves genetic and epigenetic controls: feather arrays simulated by digital hormone models. Int. J. Dev. Biol. 48, 117–135 (2004).

    Article  CAS  Google Scholar 

  19. Salazar-Ciudad, I. & Jernvall, J. A gene network model accounting for development and evolution of mammalian teeth. Proc. Natl Acad. Sci. USA 99, 8116–8120 (2002).

    Article  CAS  Google Scholar 

  20. Baker, R. E., Schnell, S. & Maini, P. K. A clock and wavefront mechanism for somite formation. Dev. Biol. 293, 116–126 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newman, S. The Turing mechanism in vertebrate limb patterning. Nat Rev Mol Cell Biol 8, 1 (2007). https://doi.org/10.1038/nrm1830-c1

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nrm1830-c1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing