This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout
References
Tickle, C. Making digit patterns in the vertebrate limb. Nature Rev. Mol. Cell Biol. 7, 45–53 (2006).
Turing, A. The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237, 37–72 (1952).
Wolpert, L. Positional information revisited. Development 107, 3–12 (1989).
Newman, S. A. & Frisch, H. L. Dynamics of skeletal pattern formation in developing chick limb. Science 205, 662–668 (1979).
Miura, T. & Shiota, K. Extracellular matrix environment influences chondrogenic pattern formation in limb bud micromass culture: experimental verification of theoretical models. Anat. Rec. 258, 100–107 (2000).
Miura, T. & Shiota, K. TGFβ2 acts as an 'activator' molecule in reaction–diffusion model and is involved in cell sorting phenomenon in mouse limb micromass culture. Dev. Dyn. 217, 241–249 (2000).
Moftah, M. Z. et al. Ectodermal FGFs induce perinodular inhibition of limb chondrogenesis in vitro and in vivo via FGF receptor 2. Dev. Biol. 249, 270–282 (2002).
Miura, T. & Maini, P. K. Speed of pattern appearance in reaction–diffusion models: implications in the pattern formation of limb bud mesenchyme cells. Bull. Math. Biol. 66, 627–649 (2004).
Miura, T., Shiota, K., Morriss-Kay, G. & Maini, P. K. Mixed-mode pattern in doublefoot mutant mouse limb — Turing reaction–diffusion model on a growing domain during limb development. J. Theor. Biol. 240, 562–573 (2006).
Forgacs, G. & Newman, S. A. Biological Physics of the Developing Embryo (Cambridge Univ. Press, Cambridge, 2005).
Hentschel, H. G., Glimm, T., Glazier, J. A. & Newman, S. A. Dynamical mechanisms for skeletal pattern formation in the vertebrate limb. Proc. R. Soc. Lond. B. 271, 1713–1722 (2004).
Chaturvedi, R. et al. On multiscale approaches to three-dimensional modelling of morphogenesis. J. R. Soc. Interface 2, 237–253 (2005).
Cickovski, T. et al. A framework for three-dimensional simulation of morphogenesis. IEEE/ACM Trans. Comput. Biol. Bioinform. 2, 273–288 (2005).
Christley, S., Alber, M. S. and Newman, S. A. Patterns of mesenchymal condensation in a multiscale, discrete stochastic model. PLoS Comput. Biol. 3, e76 (2007).
Alber, M., Hentschel, H. G. E., Kazmierczak, B. & Newman, S. A. Existence of solutions to a new model of biological pattern formation. J. Math. Anal. Appl. 308, 175–194 (2005).
Maini, P. K., Baker, R. E. & Chuong, C. M. Developmental biology. The Turing model comes of molecular age. Science 314, 1397–1398 (2006).
Sick, S., Reinker, S., Timmer, J. & Schlake, T. WNT and DKK determine hair follicle spacing through a reaction–diffusion mechanism. Science 314, 1447–1450 (2006).
Jiang, T. X. et al. Integument pattern formation involves genetic and epigenetic controls: feather arrays simulated by digital hormone models. Int. J. Dev. Biol. 48, 117–135 (2004).
Salazar-Ciudad, I. & Jernvall, J. A gene network model accounting for development and evolution of mammalian teeth. Proc. Natl Acad. Sci. USA 99, 8116–8120 (2002).
Baker, R. E., Schnell, S. & Maini, P. K. A clock and wavefront mechanism for somite formation. Dev. Biol. 293, 116–126 (2006).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Newman, S. The Turing mechanism in vertebrate limb patterning. Nat Rev Mol Cell Biol 8, 1 (2007). https://doi.org/10.1038/nrm1830-c1
Issue date:
DOI: https://doi.org/10.1038/nrm1830-c1