Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Correspondence
  • Published:

Chemotaxis and the cell surface-area problem

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scanning electron micrograph of a human neutrophil, which shows its extensively wrinkled surface.

References

  1. Kay, R. R., Landridge, P., Traynor, D. & Hoeller, O. Changing directions in the study of chemotaxis. Nature Rev. Mol. Cell Biol. 9, 455–463 (2008).

    Article  CAS  Google Scholar 

  2. Hallett, M. B. & Dewitt, S. Ironing out the wrinkles of neutrophil phagocytosis: membrane reservoirs for surface area expansion. Trends Cell Biol. 17, 209–214 (2007).

    Article  CAS  Google Scholar 

  3. Dewitt, S. & Hallett, M. B. Leukocyte membrane “expansion”: A central mechanism for leukocyte extravasation. J. Leukoc. Biol. 81, 1160–1164 (2007).

    Article  CAS  Google Scholar 

  4. Traynor, D. & Kay, R. R. Possible roles of the endocytic cycle in cell motility. J. Cell Sci. 120, 2318–2327 (2007).

    Article  CAS  Google Scholar 

  5. Bessis, M. Living Blood Cells and their Ultrastructure (Springer, Berlin, 1973).

    Google Scholar 

  6. Ting-Beall, H. P., Needham, D. & Hochmuth, R. M. Volume and osmotic properties of human neutrophils. Blood 81, 2774–2780 (1993).

    CAS  PubMed  Google Scholar 

  7. Shao, J. Y. & Hochmuth, R. M. Micropipette suction for measuring piconewton forces of adhesion and tether formation. Biophys. J. 71, 2892–2901 (1996).

    Article  CAS  Google Scholar 

  8. Evans. E., Leung, A. & Zhelev, D. Synchrony of cell spreading and contraction force as phagocytes engulf large pathogens. J. Cell Biol. 122, 1295–1300 (1993).

    Article  CAS  Google Scholar 

  9. Herant, M., Heinrich, V. & Dembo, M. Mechanics of neutrophil phagocytosis: experiments and quantitative models. J. Cell Sci. 119, 1903–1913 (2006).

    Article  CAS  Google Scholar 

  10. Herant, M., Heinrich. V. & Dembo, M. Mechanics of neutrophil phagocytosis: behavior of the cortical tension. J. Cell Sci. 118, 1789–1797 (2005).

    Article  CAS  Google Scholar 

  11. Dewitt, S. & Hallett, M. B. Cytosolic free Ca2+ changes and calpain activation are required for β2 integrin-accelerated phagocytosis by human neutrophils. J. Cell Biol. 159, 181–189 (2002).

    Article  CAS  Google Scholar 

  12. Lawson, M. A. & Maxfield, F. R. Ca2+-and calcineurin-dependent recycling of an integrin to the front of migrating neutrophils. Nature 377, 75–79 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurice B. Hallett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hallett, M., von Ruhland, C. & Dewitt, S. Chemotaxis and the cell surface-area problem. Nat Rev Mol Cell Biol 9, 662 (2008). https://doi.org/10.1038/nrm2419-c1

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nrm2419-c1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing