Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Essay
  • Published:

The changing face of pathogen discovery and surveillance

This article has been updated

Abstract

The pace of pathogen discovery is rapidly accelerating. This reflects not only factors that enable the appearance and globalization of new microbial infections, but also improvements in methods for ascertaining the cause of a new disease. Innovative molecular diagnostic platforms, investments in pathogen surveillance (in wildlife, domestic animals and humans) and the advent of social media tools that mine the World Wide Web for clues indicating the occurrence of infectious-disease outbreaks are all proving to be invaluable for the early recognition of threats to public health. In addition, models of microbial pathogenesis are becoming more complex, providing insights into the mechanisms by which microorganisms can contribute to chronic illnesses like cancer, peptic ulcer disease and mental illness. Here, I review the factors that contribute to infectious-disease emergence, as well as strategies for addressing the challenges of pathogen surveillance and discovery.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hot spots of outbreaks for recently emerging and re-emerging infectious diseases.

Change history

  • 07 January 2013

    The definition for InSTEDD was corrected to Innovative Support to Emergencies, Diseases and Disasters.

References

  1. Taubenberger, J. K., Hultin, J. V. & Morens, D. M. Discovery and characterization of the 1918 pandemic influenza virus in historical context. Antiviral Ther. 12, 581–591 (2007).

    CAS  Google Scholar 

  2. Durand, J. D. Historical Estimates of World Population: an Evaluation (Univ. of Pennsylvania, 1974).

    Google Scholar 

  3. Taubenberger, J. K. & Morens, D. M. 1918 influenza: the mother of all pandemics. Emerg. Infect. Dis. 12, 15–22 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  4. WHO. Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003 (WHO, 2003).

  5. Mills, C. E., Robins, J. M. & Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 432, 904–906 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Riley, S. et al. Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions. Science 300, 1961–1966 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Lipsitch, M. et al. Transmission dynamics and control of severe acute respiratory syndrome. Science 300, 1966–1970 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marra, M. A. et al. The genome sequence of the SARS-associated coronavirus. Science 300, 1399–1404 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Rota, P. A. et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300, 1394–1399 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Briese, T. et al. Genetic detection and characterization of Lujo virus, a new hemorrhagic fever-associated arenavirus from southern Africa. PLoS Pathog. 5, e1000455 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kurata, J. H. & Nogawa, A. N. Meta-analysis of risk factors for peptic ulcer. Nonsteroidal antiinflammatory drugs, Helicobacter pylori, and smoking. J. Clin. Gastroenterol. 24, 2–17 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Schiffman, M., Castle, P. E., Jeronimo, J., Rodriguez, A. C. & Wacholder, S. Human papillomavirus and cervical cancer. Lancet 370, 890–907 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Schrama, D., Ugurel, S. & Becker, J. C. Merkel cell carcinoma: recent insights and new treatment options. Curr. Opin. Oncol. 24, 141–149 (2012).

    Article  PubMed  Google Scholar 

  14. Blumberg, R. & Powrie, F. Microbiota, disease, and back to health: a metastable journey. Sci. Transl. Med. 4, 137rv7 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hosseini, P., Sokolow, S. H., Vandegrift, K. J., Kilpatrick, A. M. & Daszak, P. Predictive power of air travel and socio-economic data for early pandemic spread. PLoS ONE 5, e12763 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dowdall, N. P., Evans, A. D. & Thibeault, C. Air travel and TB: an airline perspective. Travel Med. Infect. Dis. 8, 96–103 (2010).

    Article  PubMed  Google Scholar 

  18. Mangili, A. & Gendreau, M. A. Transmission of infectious diseases during commercial air travel. Lancet 365, 989–996 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Maki, D. G. Don't eat the spinach — controlling foodborne infectious disease. N. Engl. J. Med. 355, 1952–1955 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Newell, D. G. et al. Food-borne diseases — the challenges of 20 years ago still persist while new ones continue to emerge. Int. J. Food Microbiol. 139 (Suppl. 1), S3–S15 (2010).

    Google Scholar 

  21. Eurosurveillance Editorial Team. European Food Safety Authority publishes its second report on the Schmallenberg virus. Euro Surveill. 17, 20140 (2012).

  22. Beuchat, L. R. Surface decontamination of fruits and vegetables eaten raw: a review. (WHO Food Safety Unit, 1998).

    Google Scholar 

  23. Berger, C. N. et al. Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environ. Microbiol. 12, 2385–2397 (2010).

    Article  PubMed  Google Scholar 

  24. Garcia-Alvarez, L., Dawson, S., Cookson, B. & Hawkey, P. Working across the veterinary and human health sectors. J. Antimicrob. Chemother. 67 (Suppl. 1), i37–i49 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. McEwen, S. A. & Fedorka-Cray, P. J. Antimicrobial use and resistance in animals. Clin. Infect. Dis. 34 (Suppl. 3), S93–S106 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Smith, K. M. et al. Zoonotic viruses associated with illegally imported wildlife products. PLoS ONE 7, e29505 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Harris, J. R., Neil, K. P., Behravesh, C. B., Sotir, M. J. & Angulo, F. J. Recent multistate outbreaks of human salmonella infections acquired from turtles: a continuing public health challenge. Clin. Infect. Dis. 50, 554–559 (2010).

    Article  PubMed  Google Scholar 

  28. Hutson, C. L. et al. Monkeypox zoonotic associations: insights from laboratory evaluation of animals associated with the multi-state US outbreak. Am. J. Trop. Med. Hyg. 76, 757–768 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Cox-Foster, D. L. et al. A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318, 283–287 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Finstad, O. W., Falk, K., Lovoll, M., Evensen, O. & Rimstad, E. Immunohistochemical detection of piscine reovirus (PRV) in hearts of Atlantic salmon coincide with the course of heart and skeletal muscle inflammation (HSMI). Vet. Res. 43, 27 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lovoll, M. et al. A novel totivirus and piscine reovirus (PRV) in Atlantic salmon (Salmo salar) with cardiomyopathy syndrome (CMS). Virol. J. 7, 309 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Palacios, G. et al. Heart and skeletal muscle inflammation of farmed salmon is associated with infection with a novel reovirus. PLoS ONE 5, e11487 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Karesh, W. B. et al. The ecology of zoonoses: their natural and unnatural histories. Lancet 380, 1936–1945 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chua, K. B. et al. Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. Lancet 354, 1257–1259 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Pulliam, J. R. et al. Agricultural intensification, priming for persistence and the emergence of Nipah virus: a lethal bat-borne zoonosis. J. R. Soc. Interface 9, 89–101 (2012).

    Article  PubMed  Google Scholar 

  36. Shuman, E. K. Global climate change and infectious diseases. N. Engl. J. Med. 362, 1061–1063 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. CDC. Locally acquired Dengue — Key West, Florida, 2009–2010. Morbid. Mortal. Wkly Rep. 59, 577–581 (2010).

  38. Adalja, A. A., Sell, T. K., Bouri, N. & Franco, C. Lessons learned during dengue outbreaks in the United States, 2001–2011. Emerg. Infect. Dis. 18, 608–614 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Roehr, B. Texas records worst outbreak of West Nile virus on record. BMJ 345, e6019 (2012).

    Article  PubMed  Google Scholar 

  40. Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–994 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Morse, S. S. Factors and determinants of disease emergence. Rev. Sci. Tech. 23, 443–451 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Lipkin, W. I. Microbe hunting. Microbiol. Mol. Biol. Rev. 74, 363–377 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Casas, I., Tenorio, A., Echevarria, J. M., Klapper, P. E. & Cleator, G. M. Detection of enteroviral RNA and specific DNA of herpesviruses by multiplex genome amplification. J. Virol. Methods 66, 39–50 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Nichol, S. T. et al. Genetic identification of a hantavirus associated with an outbreak of acute respiratory illness. Science 262, 914–917 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Shirato, K. et al. Diagnosis of human respiratory syncytial virus infection using reverse transcription loop-mediated isothermal amplification. J. Virol. Methods 139, 78–84 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Tumpey, T. M. et al. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310, 77–80 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Rosenstein, J. K., Wanunu, M., Merchant, C. A., Drndic, M. & Shepard, K. L. Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nature Methods 9, 487–492 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Kaittanis, C., Santra, S. & Perez, J. M. Emerging nanotechnology-based strategies for the identification of microbial pathogenesis. Adv. Drug Delivery Rev. 62, 408–423 (2010).

    Article  CAS  Google Scholar 

  49. Loman, N. J. et al. Performance comparison of benchtop high-throughput sequencing platforms. Nature Biotech. 30, 434–439 (2012).

    Article  CAS  Google Scholar 

  50. Bhatt, S., Holmes, E. C. & Pybus, O. G. The genomic rate of molecular adaptation of the human influenza A virus. Mol. Biol. Evol. 28, 2443–2451 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bull, R. A. et al. Sequential bottlenecks drive viral evolution in early acute hepatitis C virus infection. PLoS Pathog. 7, e1002243 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Poon, A. F. et al. Reconstructing the dynamics of HIV evolution within hosts from serial deep sequence data. PLoS Comput. Biol. 8, e1002753 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fitzgerald, J. R. Human origin for livestock-associated methicillin-resistant Staphylococcus aureus. mBio 3, e00082–12 (2012).

    PubMed  Google Scholar 

  54. Snitkin, E. S. et al. Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci. Transl. Med. 4, 148ra116 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Relman, D. A. Microbial genomics and infectious diseases. N. Engl. J. Med. 365, 347–357 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Streit, W. R. & Daniel, R. Metagenomics: Methods and Protocols. (Humana, 2010).

  57. Faust, K. & Raes, J. Microbial interactions: from networks to models. Nature Rev. Microbiol. 10, 538–550 (2012).

    Article  CAS  Google Scholar 

  58. Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Peterson, D. A., Frank, D. N., Pace, N. R. & Gordon, J. I. Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. Cell Host Microbe 3, 417–427 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Danovaro, R. et al. Marine viruses and global climate change. FEMS Microbiol. Rev. 35, 993–1034 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Institute of Medicine (US) Forum on Microbial Threats. Microbial evolution and co-adaptation: a tribute to the life and scientific legacies of Joshua Lederberg, workshop summary. (The National Academies Press, 2009).

  62. Madoff, L. C. ProMED-mail: an early warning system for emerging diseases. Clin. Infect. Dis. 39, 227–232 (2004).

    Article  PubMed  Google Scholar 

  63. Mykhalovskiy, E. & Weir, L. The Global Public Health Intelligence Network and early warning outbreak detection: a Canadian contribution to global public health. Can. J. Public Health 97, 42–44 (2006).

    PubMed  PubMed Central  Google Scholar 

  64. Freifeld, C. C., Mandl, K. D., Reis, B. Y. & Brownstein, J. S. HealthMap: global infectious disease monitoring through automated classification and visualization of Internet media reports. J. Am. Med. Inform. Assoc. 15, 150–157 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Woolhouse, M. E. & Gowtage-Sequeria, S. Host range and emerging and reemerging pathogens. Emerg. Infect. Dis. 11, 1842–1847 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Karesh, W. B., C. R. One world – one health. Clin. Med. 9, 259–260 (2009).

    Article  Google Scholar 

  67. Lederberg, J., Shope, R. E. & Oaks, S. C. (eds) Emerging Infections: Microbial Threats to Health in the United States (The National Academies Press, 1992).

    Google Scholar 

  68. Morse, S. S. Factors in the emergence of infectious disease. Emerg. Infect. Dis. 1, 7–15 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife—threats to biodiversity and human health. Science 287, 443–449 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Smolinski, M. S., Hamburg, M. A. & Lederberg, J. (eds) Microbial Threats to Health: Emergence, Detection, and Response, (The National Academies Press, 2003).

    Google Scholar 

  71. Lyte, M. Microbial endocrinology and infectious disease in the 21st century. Trends Microbiol. 12, 14–20 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Bruggemann, H. et al. The genome sequence of Clostridium tetani, the causative agent of tetanus disease. Proc. Natl Acad. Sci. USA 100, 1316–1321 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Segelke, B., Knapp, M., Kadkhodayan, S., Balhorn, R. & Rupp, B. Crystal structure of Clostridium botulinum neurotoxin protease in a product-bound state: evidence for noncanonical zinc protease activity. Proc. Natl Acad. Sci. USA 101, 6888–6893 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Allos, B. M. Association between Campylobacter infection and Guillain-Barre syndrome. J. Infect. Dis. 176 (Suppl. 2), S125–S128 (1997).

    Article  PubMed  Google Scholar 

  75. Koch, R. in Verhandl. des X. Interna. Med. Congr., Berlin 1890 35 (Hirschwald, 1891) (in German).

    Google Scholar 

  76. Rivers, T. M. Viruses and Koch's postulates. J. Bacteriol. 33, 1–12 (1937).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Fredericks, D. N. & Relman, D. A. Sequence-based identification of microbial pathogens: a reconsideration of Koch's postulates. Clin. Microbiol. Rev. 9, 18–33 (1996).

    Article  PubMed Central  Google Scholar 

  78. Fraser, D. W. The challenges were legion. Lancet Infect. Dis. 5, 237–241 (2005).

    Article  PubMed  Google Scholar 

  79. Fraser, D. W. et al. Legionnaires' disease: description of an epidemic of pneumonia. N. Engl. J. Med. 297, 1189–1197 (1977).

    Article  CAS  PubMed  Google Scholar 

  80. McDade, J. E. et al. Legionnaires' disease: isolation of a bacterium and demonstration of its role in other respiratory disease. N. Engl. J. Med. 297, 1197–1203 (1977).

    Article  CAS  PubMed  Google Scholar 

  81. Frank, C. et al. Epidemic profile of Shiga-toxin-producing Escherichia coli O104:H4 outbreak in Germany. N. Engl. J. Med. 365, 1771–1780 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Karch, H. et al. The enemy within us: lessons from the 2011 European Escherichia coli O104:H4 outbreak. EMBO Mol. Med. 4, 841–848 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. BBC. E. coli cucumber scare: Spain angry at German claims. BBC News [online] (2011)

  84. Busemann, H.-E. Germany says beansprouts may be behind E.coli. Reuters [online] (2011).

  85. Bielaszewska, M. et al. Characterisation of the Escherichia coli strain associated with an outbreak of haemolytic uraemic syndrome in Germany, 2011: a microbiological study. Lancet Infect. Dis. 11, 671–676 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Scheutz, F. et al. Characteristics of the enteroaggregative Shiga toxin/verotoxin-producing Escherichia coli O104:H4 strain causing the outbreak of haemolytic uraemic syndrome in Germany, May to June 2011. Euro Surveill. 16, 19889 (2011).

    Article  PubMed  Google Scholar 

  87. Mellmann, A. et al. Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PLoS ONE 6, e22751 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rohde, H. et al. Open-source genomic analysis of Shiga-toxin-producing E. coli O104:H4. N. Engl. J. Med. 365, 718–724 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Hornig, M., Briese, T. & Lipkin, W. I. Borna disease virus. J. Neurovirol. 9, 259–273 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Abildgaard, P. Pferde- und Vieharzt in einem kleinen Auszüge (J. H. Schubothe, 1795) (in German).

    Google Scholar 

  91. Trichtern, V. Pferd-Anatomie, oder Neu-auserlesen-vollkommen- verbessert-und ergänztes Roß-Artzeney-Buch (A. J. Felßecker, 1716) (in German).

    Google Scholar 

  92. von Sind, J. Der im Feld und auf der Reise geschwind heilende Pferdearzt, welcher einen gründlichen Unterricht von den gewöhnlichsten Krankheiten der Pferde im Feld und auf der Reise wie auch einen auserlesenen Vorrath der nützlichsten und durch die Erfahrung bewährtesten Heilungsmitteln eröffnet. (H. L. Brönner, 1767) (in German).

    Google Scholar 

  93. Lipkin, W. & Briese, T. in Fields Virology (eds Knipe, D. M. & Howley, R. M.) 1829–1851 (Lippincott, 2007).

    Google Scholar 

  94. Rott, R. et al. Detection of serum antibodies to Borna disease virus in patients with psychiatric disorders. Science 228, 755–756 (1985).

    Article  CAS  PubMed  Google Scholar 

  95. Lipkin, W. I., Travis, G. H., Carbone, K. M. & Wilson, M. C. Isolation and characterization of Borna disease agent cDNA clones. Proc. Natl Acad. Sci. USA 87, 4184–4188 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Briese, T., de la Torre, J. C., Lewis, A., Ludwig, H. & Lipkin, W. I. Borna disease virus, a negative-strand RNA virus, transcribes in the nucleus of infected cells. Proc. Natl Acad. Sci. USA 89, 11486–11489 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Briese, T. et al. Genomic organization of Borna disease virus. Proc. Natl Acad. Sci. USA 91, 4362–4366 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hornig, M. et al. Absence of evidence for bornavirus infection in schizophrenia, bipolar disorder and major depressive disorder. Mol. Psychiatry 17, 486–493 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Honkavuori, K. S. et al. Novel borna virus in psittacine birds with proventricular dilatation disease. Emerg. Infect. Dis. 14, 1883–1886 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kistler, A. L. et al. Recovery of divergent avian bornaviruses from cases of proventricular dilatation disease: identification of a candidate etiologic agent. Virol. J. 5, 88 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kistler, A. L., Smith, J. M., Greninger, A. L., Derisi, J. L. & Ganem, D. Analysis of naturally occurring avian bornavirus infection and transmission during an outbreak of proventricular dilatation disease among captive psittacine birds. J. Virol. 84, 2176–2179 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Committee on Anticipating Biosecurity Challenges of the Global Expansion of High-Containment Biological Laboratories, US National Academy of Sciences, US National Research Council. Biosecurity Challenges of the Global Expansion of High-Containment Biological Laboratories (The National Academies Press, 2012).

  103. Fauci, A. S. Infectious diseases: considerations for the 21st century. Clin. Infect. Dis. 32, 675–685 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks N. Akpan for assistance with the manuscript; P. Daszak, W. Karesh, C. Firth, M. Hornig and E. Holmes for thoughtful comments; and the US National Institutes of Health (grant AI57158), the US Agency for International Development (the PREDICT programme) and the US Defense Threat Reduction Agency for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Ian Lipkin.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

The Center for Infection and Immunity, Columbia University

CDC National Notifiable Diseases Surveillance System

DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP)

Emerging Pandemic Threats

FAOSTAT trade data

Google Flu Trends

InSTEDD

US airlines and foreign airlines US passengers continue to Increase from 2009

US Bureau of Transportation Statistics flight information

US Department of State Wildlife Trafficking

World Population Prospects, the 2010 Revision; Table 'Total Population, Both Sexes'

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipkin, W. The changing face of pathogen discovery and surveillance. Nat Rev Microbiol 11, 133–141 (2013). https://doi.org/10.1038/nrmicro2949

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrmicro2949

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology