Abstract
The pace of pathogen discovery is rapidly accelerating. This reflects not only factors that enable the appearance and globalization of new microbial infections, but also improvements in methods for ascertaining the cause of a new disease. Innovative molecular diagnostic platforms, investments in pathogen surveillance (in wildlife, domestic animals and humans) and the advent of social media tools that mine the World Wide Web for clues indicating the occurrence of infectious-disease outbreaks are all proving to be invaluable for the early recognition of threats to public health. In addition, models of microbial pathogenesis are becoming more complex, providing insights into the mechanisms by which microorganisms can contribute to chronic illnesses like cancer, peptic ulcer disease and mental illness. Here, I review the factors that contribute to infectious-disease emergence, as well as strategies for addressing the challenges of pathogen surveillance and discovery.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
A novel Betaretrovirus discovered in cattle with neurological disease and encephalitis
Retrovirology Open Access 20 December 2021
-
Current progress and future opportunities in applications of bioinformatics for biodefense and pathogen detection: report from the Winter Mid-Atlantic Microbiome Meet-up, College Park, MD, January 10, 2018
Microbiome Open Access 05 November 2018
-
A systematic review of spatial decision support systems in public health informatics supporting the identification of high risk areas for zoonotic disease outbreaks
International Journal of Health Geographics Open Access 30 October 2018
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout

Change history
07 January 2013
The definition for InSTEDD was corrected to Innovative Support to Emergencies, Diseases and Disasters.
References
Taubenberger, J. K., Hultin, J. V. & Morens, D. M. Discovery and characterization of the 1918 pandemic influenza virus in historical context. Antiviral Ther. 12, 581–591 (2007).
Durand, J. D. Historical Estimates of World Population: an Evaluation (Univ. of Pennsylvania, 1974).
Taubenberger, J. K. & Morens, D. M. 1918 influenza: the mother of all pandemics. Emerg. Infect. Dis. 12, 15–22 (2006).
WHO. Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003 (WHO, 2003).
Mills, C. E., Robins, J. M. & Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 432, 904–906 (2004).
Riley, S. et al. Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions. Science 300, 1961–1966 (2003).
Lipsitch, M. et al. Transmission dynamics and control of severe acute respiratory syndrome. Science 300, 1966–1970 (2003).
Marra, M. A. et al. The genome sequence of the SARS-associated coronavirus. Science 300, 1399–1404 (2003).
Rota, P. A. et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300, 1394–1399 (2003).
Briese, T. et al. Genetic detection and characterization of Lujo virus, a new hemorrhagic fever-associated arenavirus from southern Africa. PLoS Pathog. 5, e1000455 (2009).
Kurata, J. H. & Nogawa, A. N. Meta-analysis of risk factors for peptic ulcer. Nonsteroidal antiinflammatory drugs, Helicobacter pylori, and smoking. J. Clin. Gastroenterol. 24, 2–17 (1997).
Schiffman, M., Castle, P. E., Jeronimo, J., Rodriguez, A. C. & Wacholder, S. Human papillomavirus and cervical cancer. Lancet 370, 890–907 (2007).
Schrama, D., Ugurel, S. & Becker, J. C. Merkel cell carcinoma: recent insights and new treatment options. Curr. Opin. Oncol. 24, 141–149 (2012).
Blumberg, R. & Powrie, F. Microbiota, disease, and back to health: a metastable journey. Sci. Transl. Med. 4, 137rv7 (2012).
Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).
Hosseini, P., Sokolow, S. H., Vandegrift, K. J., Kilpatrick, A. M. & Daszak, P. Predictive power of air travel and socio-economic data for early pandemic spread. PLoS ONE 5, e12763 (2010).
Dowdall, N. P., Evans, A. D. & Thibeault, C. Air travel and TB: an airline perspective. Travel Med. Infect. Dis. 8, 96–103 (2010).
Mangili, A. & Gendreau, M. A. Transmission of infectious diseases during commercial air travel. Lancet 365, 989–996 (2005).
Maki, D. G. Don't eat the spinach — controlling foodborne infectious disease. N. Engl. J. Med. 355, 1952–1955 (2006).
Newell, D. G. et al. Food-borne diseases — the challenges of 20 years ago still persist while new ones continue to emerge. Int. J. Food Microbiol. 139 (Suppl. 1), S3–S15 (2010).
Eurosurveillance Editorial Team. European Food Safety Authority publishes its second report on the Schmallenberg virus. Euro Surveill. 17, 20140 (2012).
Beuchat, L. R. Surface decontamination of fruits and vegetables eaten raw: a review. (WHO Food Safety Unit, 1998).
Berger, C. N. et al. Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environ. Microbiol. 12, 2385–2397 (2010).
Garcia-Alvarez, L., Dawson, S., Cookson, B. & Hawkey, P. Working across the veterinary and human health sectors. J. Antimicrob. Chemother. 67 (Suppl. 1), i37–i49 (2012).
McEwen, S. A. & Fedorka-Cray, P. J. Antimicrobial use and resistance in animals. Clin. Infect. Dis. 34 (Suppl. 3), S93–S106 (2002).
Smith, K. M. et al. Zoonotic viruses associated with illegally imported wildlife products. PLoS ONE 7, e29505 (2012).
Harris, J. R., Neil, K. P., Behravesh, C. B., Sotir, M. J. & Angulo, F. J. Recent multistate outbreaks of human salmonella infections acquired from turtles: a continuing public health challenge. Clin. Infect. Dis. 50, 554–559 (2010).
Hutson, C. L. et al. Monkeypox zoonotic associations: insights from laboratory evaluation of animals associated with the multi-state US outbreak. Am. J. Trop. Med. Hyg. 76, 757–768 (2007).
Cox-Foster, D. L. et al. A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318, 283–287 (2007).
Finstad, O. W., Falk, K., Lovoll, M., Evensen, O. & Rimstad, E. Immunohistochemical detection of piscine reovirus (PRV) in hearts of Atlantic salmon coincide with the course of heart and skeletal muscle inflammation (HSMI). Vet. Res. 43, 27 (2012).
Lovoll, M. et al. A novel totivirus and piscine reovirus (PRV) in Atlantic salmon (Salmo salar) with cardiomyopathy syndrome (CMS). Virol. J. 7, 309 (2010).
Palacios, G. et al. Heart and skeletal muscle inflammation of farmed salmon is associated with infection with a novel reovirus. PLoS ONE 5, e11487 (2010).
Karesh, W. B. et al. The ecology of zoonoses: their natural and unnatural histories. Lancet 380, 1936–1945 (2012).
Chua, K. B. et al. Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. Lancet 354, 1257–1259 (1999).
Pulliam, J. R. et al. Agricultural intensification, priming for persistence and the emergence of Nipah virus: a lethal bat-borne zoonosis. J. R. Soc. Interface 9, 89–101 (2012).
Shuman, E. K. Global climate change and infectious diseases. N. Engl. J. Med. 362, 1061–1063 (2010).
CDC. Locally acquired Dengue — Key West, Florida, 2009–2010. Morbid. Mortal. Wkly Rep. 59, 577–581 (2010).
Adalja, A. A., Sell, T. K., Bouri, N. & Franco, C. Lessons learned during dengue outbreaks in the United States, 2001–2011. Emerg. Infect. Dis. 18, 608–614 (2012).
Roehr, B. Texas records worst outbreak of West Nile virus on record. BMJ 345, e6019 (2012).
Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–994 (2008).
Morse, S. S. Factors and determinants of disease emergence. Rev. Sci. Tech. 23, 443–451 (2004).
Lipkin, W. I. Microbe hunting. Microbiol. Mol. Biol. Rev. 74, 363–377 (2010).
Casas, I., Tenorio, A., Echevarria, J. M., Klapper, P. E. & Cleator, G. M. Detection of enteroviral RNA and specific DNA of herpesviruses by multiplex genome amplification. J. Virol. Methods 66, 39–50 (1997).
Nichol, S. T. et al. Genetic identification of a hantavirus associated with an outbreak of acute respiratory illness. Science 262, 914–917 (1993).
Shirato, K. et al. Diagnosis of human respiratory syncytial virus infection using reverse transcription loop-mediated isothermal amplification. J. Virol. Methods 139, 78–84 (2007).
Tumpey, T. M. et al. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310, 77–80 (2005).
Rosenstein, J. K., Wanunu, M., Merchant, C. A., Drndic, M. & Shepard, K. L. Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nature Methods 9, 487–492 (2012).
Kaittanis, C., Santra, S. & Perez, J. M. Emerging nanotechnology-based strategies for the identification of microbial pathogenesis. Adv. Drug Delivery Rev. 62, 408–423 (2010).
Loman, N. J. et al. Performance comparison of benchtop high-throughput sequencing platforms. Nature Biotech. 30, 434–439 (2012).
Bhatt, S., Holmes, E. C. & Pybus, O. G. The genomic rate of molecular adaptation of the human influenza A virus. Mol. Biol. Evol. 28, 2443–2451 (2011).
Bull, R. A. et al. Sequential bottlenecks drive viral evolution in early acute hepatitis C virus infection. PLoS Pathog. 7, e1002243 (2011).
Poon, A. F. et al. Reconstructing the dynamics of HIV evolution within hosts from serial deep sequence data. PLoS Comput. Biol. 8, e1002753 (2012).
Fitzgerald, J. R. Human origin for livestock-associated methicillin-resistant Staphylococcus aureus. mBio 3, e00082–12 (2012).
Snitkin, E. S. et al. Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci. Transl. Med. 4, 148ra116 (2012).
Relman, D. A. Microbial genomics and infectious diseases. N. Engl. J. Med. 365, 347–357 (2011).
Streit, W. R. & Daniel, R. Metagenomics: Methods and Protocols. (Humana, 2010).
Faust, K. & Raes, J. Microbial interactions: from networks to models. Nature Rev. Microbiol. 10, 538–550 (2012).
Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012).
Peterson, D. A., Frank, D. N., Pace, N. R. & Gordon, J. I. Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. Cell Host Microbe 3, 417–427 (2008).
Danovaro, R. et al. Marine viruses and global climate change. FEMS Microbiol. Rev. 35, 993–1034 (2011).
Institute of Medicine (US) Forum on Microbial Threats. Microbial evolution and co-adaptation: a tribute to the life and scientific legacies of Joshua Lederberg, workshop summary. (The National Academies Press, 2009).
Madoff, L. C. ProMED-mail: an early warning system for emerging diseases. Clin. Infect. Dis. 39, 227–232 (2004).
Mykhalovskiy, E. & Weir, L. The Global Public Health Intelligence Network and early warning outbreak detection: a Canadian contribution to global public health. Can. J. Public Health 97, 42–44 (2006).
Freifeld, C. C., Mandl, K. D., Reis, B. Y. & Brownstein, J. S. HealthMap: global infectious disease monitoring through automated classification and visualization of Internet media reports. J. Am. Med. Inform. Assoc. 15, 150–157 (2008).
Woolhouse, M. E. & Gowtage-Sequeria, S. Host range and emerging and reemerging pathogens. Emerg. Infect. Dis. 11, 1842–1847 (2005).
Karesh, W. B., C. R. One world – one health. Clin. Med. 9, 259–260 (2009).
Lederberg, J., Shope, R. E. & Oaks, S. C. (eds) Emerging Infections: Microbial Threats to Health in the United States (The National Academies Press, 1992).
Morse, S. S. Factors in the emergence of infectious disease. Emerg. Infect. Dis. 1, 7–15 (1995).
Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife—threats to biodiversity and human health. Science 287, 443–449 (2000).
Smolinski, M. S., Hamburg, M. A. & Lederberg, J. (eds) Microbial Threats to Health: Emergence, Detection, and Response, (The National Academies Press, 2003).
Lyte, M. Microbial endocrinology and infectious disease in the 21st century. Trends Microbiol. 12, 14–20 (2004).
Bruggemann, H. et al. The genome sequence of Clostridium tetani, the causative agent of tetanus disease. Proc. Natl Acad. Sci. USA 100, 1316–1321 (2003).
Segelke, B., Knapp, M., Kadkhodayan, S., Balhorn, R. & Rupp, B. Crystal structure of Clostridium botulinum neurotoxin protease in a product-bound state: evidence for noncanonical zinc protease activity. Proc. Natl Acad. Sci. USA 101, 6888–6893 (2004).
Allos, B. M. Association between Campylobacter infection and Guillain-Barre syndrome. J. Infect. Dis. 176 (Suppl. 2), S125–S128 (1997).
Koch, R. in Verhandl. des X. Interna. Med. Congr., Berlin 1890 35 (Hirschwald, 1891) (in German).
Rivers, T. M. Viruses and Koch's postulates. J. Bacteriol. 33, 1–12 (1937).
Fredericks, D. N. & Relman, D. A. Sequence-based identification of microbial pathogens: a reconsideration of Koch's postulates. Clin. Microbiol. Rev. 9, 18–33 (1996).
Fraser, D. W. The challenges were legion. Lancet Infect. Dis. 5, 237–241 (2005).
Fraser, D. W. et al. Legionnaires' disease: description of an epidemic of pneumonia. N. Engl. J. Med. 297, 1189–1197 (1977).
McDade, J. E. et al. Legionnaires' disease: isolation of a bacterium and demonstration of its role in other respiratory disease. N. Engl. J. Med. 297, 1197–1203 (1977).
Frank, C. et al. Epidemic profile of Shiga-toxin-producing Escherichia coli O104:H4 outbreak in Germany. N. Engl. J. Med. 365, 1771–1780 (2011).
Karch, H. et al. The enemy within us: lessons from the 2011 European Escherichia coli O104:H4 outbreak. EMBO Mol. Med. 4, 841–848 (2012).
BBC. E. coli cucumber scare: Spain angry at German claims. BBC News [online] (2011)
Busemann, H.-E. Germany says beansprouts may be behind E.coli. Reuters [online] (2011).
Bielaszewska, M. et al. Characterisation of the Escherichia coli strain associated with an outbreak of haemolytic uraemic syndrome in Germany, 2011: a microbiological study. Lancet Infect. Dis. 11, 671–676 (2011).
Scheutz, F. et al. Characteristics of the enteroaggregative Shiga toxin/verotoxin-producing Escherichia coli O104:H4 strain causing the outbreak of haemolytic uraemic syndrome in Germany, May to June 2011. Euro Surveill. 16, 19889 (2011).
Mellmann, A. et al. Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PLoS ONE 6, e22751 (2011).
Rohde, H. et al. Open-source genomic analysis of Shiga-toxin-producing E. coli O104:H4. N. Engl. J. Med. 365, 718–724 (2011).
Hornig, M., Briese, T. & Lipkin, W. I. Borna disease virus. J. Neurovirol. 9, 259–273 (2003).
Abildgaard, P. Pferde- und Vieharzt in einem kleinen Auszüge (J. H. Schubothe, 1795) (in German).
Trichtern, V. Pferd-Anatomie, oder Neu-auserlesen-vollkommen- verbessert-und ergänztes Roß-Artzeney-Buch (A. J. Felßecker, 1716) (in German).
von Sind, J. Der im Feld und auf der Reise geschwind heilende Pferdearzt, welcher einen gründlichen Unterricht von den gewöhnlichsten Krankheiten der Pferde im Feld und auf der Reise wie auch einen auserlesenen Vorrath der nützlichsten und durch die Erfahrung bewährtesten Heilungsmitteln eröffnet. (H. L. Brönner, 1767) (in German).
Lipkin, W. & Briese, T. in Fields Virology (eds Knipe, D. M. & Howley, R. M.) 1829–1851 (Lippincott, 2007).
Rott, R. et al. Detection of serum antibodies to Borna disease virus in patients with psychiatric disorders. Science 228, 755–756 (1985).
Lipkin, W. I., Travis, G. H., Carbone, K. M. & Wilson, M. C. Isolation and characterization of Borna disease agent cDNA clones. Proc. Natl Acad. Sci. USA 87, 4184–4188 (1990).
Briese, T., de la Torre, J. C., Lewis, A., Ludwig, H. & Lipkin, W. I. Borna disease virus, a negative-strand RNA virus, transcribes in the nucleus of infected cells. Proc. Natl Acad. Sci. USA 89, 11486–11489 (1992).
Briese, T. et al. Genomic organization of Borna disease virus. Proc. Natl Acad. Sci. USA 91, 4362–4366 (1994).
Hornig, M. et al. Absence of evidence for bornavirus infection in schizophrenia, bipolar disorder and major depressive disorder. Mol. Psychiatry 17, 486–493 (2012).
Honkavuori, K. S. et al. Novel borna virus in psittacine birds with proventricular dilatation disease. Emerg. Infect. Dis. 14, 1883–1886 (2008).
Kistler, A. L. et al. Recovery of divergent avian bornaviruses from cases of proventricular dilatation disease: identification of a candidate etiologic agent. Virol. J. 5, 88 (2008).
Kistler, A. L., Smith, J. M., Greninger, A. L., Derisi, J. L. & Ganem, D. Analysis of naturally occurring avian bornavirus infection and transmission during an outbreak of proventricular dilatation disease among captive psittacine birds. J. Virol. 84, 2176–2179 (2010).
Committee on Anticipating Biosecurity Challenges of the Global Expansion of High-Containment Biological Laboratories, US National Academy of Sciences, US National Research Council. Biosecurity Challenges of the Global Expansion of High-Containment Biological Laboratories (The National Academies Press, 2012).
Fauci, A. S. Infectious diseases: considerations for the 21st century. Clin. Infect. Dis. 32, 675–685 (2001).
Acknowledgements
The author thanks N. Akpan for assistance with the manuscript; P. Daszak, W. Karesh, C. Firth, M. Hornig and E. Holmes for thoughtful comments; and the US National Institutes of Health (grant AI57158), the US Agency for International Development (the PREDICT programme) and the US Defense Threat Reduction Agency for financial support.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing financial interests.
Related links
Related links
FURTHER INFORMATION
The Center for Infection and Immunity, Columbia University
CDC National Notifiable Diseases Surveillance System
DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP)
US airlines and foreign airlines US passengers continue to Increase from 2009
US Bureau of Transportation Statistics flight information
US Department of State Wildlife Trafficking
World Population Prospects, the 2010 Revision; Table 'Total Population, Both Sexes'
Rights and permissions
About this article
Cite this article
Lipkin, W. The changing face of pathogen discovery and surveillance. Nat Rev Microbiol 11, 133–141 (2013). https://doi.org/10.1038/nrmicro2949
Published:
Issue date:
DOI: https://doi.org/10.1038/nrmicro2949
This article is cited by
-
A novel Betaretrovirus discovered in cattle with neurological disease and encephalitis
Retrovirology (2021)
-
Towards a more healthy conservation paradigm: integrating disease and molecular ecology to aid biological conservation†
Journal of Genetics (2020)
-
Nanozyme Enhanced Colorimetric Immunoassay for Naked-Eye Detection of Salmonella Enteritidis
Journal of Analysis and Testing (2019)
-
A systematic review of spatial decision support systems in public health informatics supporting the identification of high risk areas for zoonotic disease outbreaks
International Journal of Health Geographics (2018)
-
Current progress and future opportunities in applications of bioinformatics for biodefense and pathogen detection: report from the Winter Mid-Atlantic Microbiome Meet-up, College Park, MD, January 10, 2018
Microbiome (2018)