Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Systems virology: host-directed approaches to viral pathogenesis and drug targeting

Key Points

  • Systems biology approaches are required to advance our understanding of virus–host interactions, how these interactions cause disease and, ultimately, how to improve diagnostics, therapeutics and vaccines.

  • Over the past decade, the field of systems virology has evolved from using first-generation microarrays to the integration of multidimensional data sets. This has resulted in significant findings, including the identification of gene expression signatures that are predictive of viral pathogenesis and vaccine efficacy, insights into how viruses disrupt cellular metabolism, and the mapping of virus–host interactomes.

  • To fulfil its initial promise of revolutionizing our understanding of virus–host interactions, the field of systems virology must move beyond just the listing of molecules that are differentially expressed following viral infection; it must now look to define the relationships between key host molecules and their interactions with viral components.

  • Several key computational challenges must be addressed in order to move into this new phase of systems virology, including consideration of nonlinear relationships such as the dynamics of the system, the integration of multidimensional data sets and the identification of causal relationships.

  • Virologists, computer scientists and mathematicians must combine their skills and expertise in applying systems approaches to untangle the complex question of how viruses kill.

Abstract

High-throughput molecular profiling and computational biology are changing the face of virology, providing a new appreciation of the importance of the host in viral pathogenesis and offering unprecedented opportunities for better diagnostics, therapeutics and vaccines. Here, we provide a snapshot of the evolution of systems virology, from global gene expression profiling and signatures of disease outcome, to geometry-based computational methods that promise to yield novel therapeutic targets, personalized medicine and a deeper understanding of how viruses cause disease. To realize these goals, pipettes and Petri dishes need to join forces with the powers of mathematics and computational biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The systems virology paradigm.
Figure 2: A 57-gene analogue signature predicts respiratory virus pathogenicity.
Figure 3: Co-regulation networks.

Similar content being viewed by others

References

  1. Aderem, A. et al. A systems biology approach to infectious disease research: innovating the pathogen-host research paradigm. mBio 2, e00325-10 (2011). A perspective by leaders in the field of systems biology of infectious disease research.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tisoncik, J. R. & Katze, M. G. What is systems biology? Future Microbiol. 5, 139–141 (2010).

    Article  PubMed  Google Scholar 

  3. Katze, M. G. (ed.) Systems Biology (Springer, 2013).

    Book  Google Scholar 

  4. Macilwain, C. Systems biology: evolving into the mainstream. Cell 144, 839–841 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Diercks, A. & Aderem, A. Systems approaches to dissecting immunity. Curr. Top. Microbiol. Immunol. 363, 1–19 (2013).

    CAS  PubMed  Google Scholar 

  6. Lauffenburger, D. A. The multiple dimensions of integrative biology. Integr. Biol. (Camb.) 4, 9 (2012).

    Article  CAS  Google Scholar 

  7. Lesne, A. Multiscale analysis of biological systems. Acta Biotheor. 61, 3–19 (2013).

    Article  PubMed  Google Scholar 

  8. Geiss, G. K. et al. Large-scale monitoring of host cell gene expression during HIV-1 infection using cDNA microarrays. Virology 266, 8–16 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Fukuyama, S. & Kawaoka, Y. The pathogenesis of influenza virus infections: the contributions of virus and host factors. Curr. Opin. Immunol. 23, 481–486 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Korth, M. J., Tchitchek, N., Benecke, A. G. & Katze, M. G. Systems approaches to influenza-virus host interactions and the pathogenesis of highly virulent and pandemic viruses. Semin. Immunol. 4 Dec 2012 (doi:10.1016/j.smim.2012.11.001).

  11. Kash, J. C. et al. Genomic analysis of increased host immune and cell death responses induced by 1918 influenza virus. Nature 443, 578–581 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Kobasa, D. et al. Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature 445, 319–323 (2007). The first study in which non-human primates are infected with the 1918 pandemic influenza virus. This study highlights the importance of the ability of the virus to modulate the host response.

    Article  CAS  PubMed  Google Scholar 

  13. Tisoncik, J. R. et al. Into the eye of the cytokine storm. Microbiol. Molec Biol. Rev. 76, 16–32 (2012). A review discussing the cytokine storm in the context of viral infections, and how systems virology approaches have provided significant insights into the kinetics of cytokine gene expression.

    Article  CAS  Google Scholar 

  14. Baskin, C. R. et al. Early and sustained innate immune response defines pathology and death in nonhuman primates infected by highly pathogenic influenza virus. Proc. Natl Acad. Sci. USA 106, 3455–3460 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cilloniz, C. et al. Lethal influenza virus infection in macaques is associated with early dysregulation of inflammatory related genes. PLoS Pathog. 5, e1000604 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Cilloniz, C. et al. Lethal dissemination of H5N1 influenza virus is associated with dysregulation of inflammation and lipoxin signaling in a mouse model of infection. J. Virol. 84, 7613–7624 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Thomas, P. G. et al. The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. Immunity 30, 566–575 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ichinohe, T., Lee, H. K., Ogura, Y., Flavell, R. & Iwasaki, A. Inflammasome recognition of influenza virus is essential for adaptive immune responses. J. Exp. Med. 206, 79–87 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Allen, I. C. et al. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 30, 556–565 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Chang, S. T., Tchitchek, N., Ghosh, D., Benecke, A. & Katze, M. G. A chemokine gene expression signature derived from meta-analysis predicts the pathogenicity of viral respiratory infections. BMC Syst. Biol. 5, 202 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Khondoker, M. R. et al. Multi-factorial analysis of class predication error: estimating optimal number of biomarkers for various classification rules. J. Bioinform. Comput. Biol. 08, 945–965 (2010).

    Article  Google Scholar 

  22. Pulendran, B., Li, S. & Nakaya, H. I. Systems vaccinology. Immunity 33, 516–529 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Poland, G. A., Ovsyannikova, I. G., Kennedy, R. B., Haralambieva, I. H. & Jacobson, R. M. Vaccinomics and a new paradigm for the development of preventive vaccines against viral infections. OMICS 15, 625–636 (2011). A review about a new paradigm for vaccine development. This is one of several reviews in a special issue of OMICS entitled Vaccines of the 21st Century: Vaccinomics for the Global Public Health.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Querec, T. D. et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nature Immunol. 10, 116–125 (2009).

    Article  CAS  Google Scholar 

  25. Nakaya, H. I. et al. Systems biology of vaccination for seasonal influenza in humans. Nature Immunol. 12, 786–795 (2011).

    Article  CAS  Google Scholar 

  26. Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  CAS  Google Scholar 

  27. Djebali, S. et al. Landscape of transcription in human cells. Nature 489, 101–108 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Skalsky, R. L. et al. The viral and cellular microRNA targetome in lymphoblastoid cell lines. PLoS Pathog. 8, e1002484 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Mercer, T. R., Dinger, M. E. & Mattick, J. S. Long non-coding RNAs: insights into functions. Nature Rev. Genet. 10, 155–159 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Peng, X. et al. Unique signatures of long noncoding RNA expression in response to virus infection and altered innate immune signaling. mBio 1, e00206-10 (2010). The first paper to report the discovery of differential expression of several long non-coding RNAs in response to SARS-CoV infection in four founder strains of the Collaborative Cross mouse model.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Peng, X. et al. Integrative deep sequencing of the mouse lung transcriptome reveals differential expression of diverse classes of small RNAs in response to respiratory virus infection. mBio 2, 00198-11 (2011).

    Article  CAS  Google Scholar 

  32. Chang, S. T. et al. Next-generation sequencing reveals HIV-1-mediated suppression of T cell activation and RNA processing and regulation of noncoding RNA expression in a CD4+ T cell line. mBio 2, e00134-11 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Chang, S. T. et al. Next-generation sequencing of small RNAs from HIV-infected cells identifies phased microRNA expression patterns and candidate novel microRNAs differentially expressed upon infection. mBio 4, e00549-12 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Stern-Ginossar, N. et al. Decoding human cytomegalovirus. Science 338, 1088–1093 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Munger, J., Bajad, S. U., Coller, H. A., Shenk, T. & Rabinowitz, J. D. Dynamics of the cellular metabolome during human cytomegalovirus infection. PLoS Pathog. 2, e132 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Munger, J. et al. Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nature Biotech. 26, 1179–1186 (2008).

    Article  CAS  Google Scholar 

  37. Vastag, L., Koyuncu, E., Grady, S. L., Shenk, T. E. & Rabinowitz, J. D. Divergent effects of human cytomegalovirus and herpes simplex virus-1 on cellular metabolism. PLoS Pathog. 7, e1002124 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. McArdle, J., Schafer, X. L. & Munger, J. Inhibition of calmodulin-dependent kinase kinase blocks human cytomegalovirus-induced glycolytic activation and severely attenuates production of viral progeny. J. Virol. 85, 705–714 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Spencer, C. M., Schafer, X. L., Moorman, N. J. & Munger, J. Human cytomegalovirus induces the activity and expression of acetyl-coenzyme A carboxylase, a fatty acid biosynthetic enzyme whose inhibition attenuates viral replication. J. Virol. 85, 5814–5824 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Liu, S. T. et al. Synaptic vesicle-like lipidome of human cytomegalovirus virions reveals a role for SNARE machinery in virion egress. Proc. Natl Acad. Sci. USA 108, 12869–12874 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McArdle, J., Moorman, N. J. & Munger, J. HCMV targets the metabolic stress response through activation of AMPK whose activity is important for viral replication. PLoS Pathog. 8, e1002502 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Grady, S. L., Hwang, J., Vastag, L., Rabinowitz, J. D. & Shenk, T. Herpes simplex virus 1 infection activates poly(ADP-ribose) polymerase and triggers the degradation of poly(ADP-ribose) glycohydrolase. J. Virol. 86, 8259–8268 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Blanc, M. et al. Host defense against viral infection involves interferon mediated down-regulation of sterol biosynthesis. PLoS Biol. 9, e1000598 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Pfefferle, S. et al. The SARS-coronavirus-host interactome: identification of cyclophilins as target for pan-coronavirus inhibitors. PLoS Pathog. 7, e1002331 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Brass, A. L. et al. Identification of host proteins required for HIV infection through a functional genomic screen. Science 319, 921–926 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Krishnan, M. N. et al. RNA interference screen for human genes associated with West Nile virus infection. Nature 455, 242–245 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Sessions, O. M. et al. Discovery of insect and human dengue virus host factors. Nature 458, 1047–1050 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Brass, A. L. et al. The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell 139, 1243–1254 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Li, Q. et al. A genome-wide genetic screen for host factors required for hepatitis C virus propagation. Proc. Natl Acad. Sci. USA 106, 16410–16415 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. The Complex Trait Consortium. The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nature Genet. 36, 1133–1137 (2004).

  51. Uetz, P. et al. Herpesviral protein networks and their interaction with the human proteome. Science 311, 239–242 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Friedel, C. C. & Haas, J. Virus–host interactomes and global models of virus-infected cells. Trends Microbiol. 19, 501–508 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Ma-Lauer, Y., Lei, J., Hilgenfeld, R. & von Brunn, A. Virus–host interactomes — antiviral drug discovery. Curr. Opin. Virol. 2, 614–621 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Panda, D. & Cherry, S. Cell-based genomic screening: elucidating virus–host interactions. Curr. Opin. Virol. 2, 778–786 (2012).

    Article  PubMed Central  CAS  Google Scholar 

  55. Stertz, S. & Shaw, M. L. Uncovering the global host cell requirements for influenza virus replication via RNAi screening. Microbes Infect. 13, 516–525 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Meyniel-Schicklin, L., de Chassey, B., Andre, P. & Lotteau, V. Viruses and interactomes in translation. Mol. Cell. Proteomics 11, M111.014738 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Rozenblatt-Rosen, O. et al. Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins. Nature 487, 491–495 (2012). A study that identifies potential cancer-causing driver genes by combining data from tumour virus–host interactomes with data about changes in the host transcriptome on expression of tumour virus ORFs.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Bottomly, D. et al. Expression quantitative trait loci for extreme host response to influenza A in pre-collaborative cross mice. G3 (Bethesda) 2, 213–221 (2012).

    Article  Google Scholar 

  59. Laird, P. W. Principles and challenges of genomewide DNA methylation analysis. Nature Rev. Genet. 11, 191–203 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Garcia, B. A. Mass spectrometric analysis of histone variants and post-translational modifications. Front. Biosci. (Schol. Ed.) 1, 142–153 (2009).

    Article  Google Scholar 

  61. Knight, J. C. Genomic modulators of the immune response. Trends Genet. 29, 74–83 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Ernberg, I., Karimi, M. & Ekstrom, T. J. Epigenetic mechanisms as targets and companions of viral assaults. Ann. NY Acad. Sci. 1230, E29–E36 (2011).

    Article  PubMed  Google Scholar 

  63. Marazzi, I. et al. Suppression of the antiviral response by an influenza histone mimic. Nature 483, 428–433 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Benecke, A. Gene regulatory network inference using out of equilibrium statistical mechanics. HFSP J. 2, 183–188 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Berg, J. Out-of-equilibrium dynamics of gene expression and the Jarzynski equality. Phys. Rev. Lett. 100, 188101 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. McDermott, J. E., Taylor, R. C., Yoon, H. & Heffron, F. Bottlenecks and hubs in inferred networks are important for virulence in Salmonella typhimurium. J. Comput. Biol. 16, 169–180 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Girvan, M. & Newman, M. E. J. Community structure in social and biological networks. Proc. Natl Acad. Sci. USA 99, 7821–7826 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Segal, E. et al. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genet. 34, 166–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Shapira, S. D. et al. A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection. Cell 139, 1255–1267 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Diamond, D. L. et al. Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics. PLoS Pathog. 6, e1000719 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. McDermott, J. E. et al. Topological analysis of protein co-abundance networks identifies novel host targets important for HCV infection and pathogenesis. BMC Syst. Biol. 6, 28 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Rasmussen, A. L. et al. Systems virology identifies a mitochondrial fatty acid oxidation enzyme, dodecenoyl coenzyme A delta isomerase, required for hepatitis C virus replication and likely pathogenesis. J. Virol. 85, 11646–11654 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Tripathi, L. P. et al. Network based analysis of hepatitis C virus core and NS4B protein interactions. Mol. Biosyst. 6, 2539–2553 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Josset, L. et al. Increased viral loads and exacerbated innate host response in aged macaques infected with 2009 pandemic H1N1 influenza A virus. J. Virol. 86, 11115–11127 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Lau, K. S. et al. In vivo systems analysis identifies spatial and temporal aspects of the modulation of TNF-α-induced apoptosis and proliferation by MAPKs. Sci. Signal. 4, ra16 (2011).

    PubMed  PubMed Central  Google Scholar 

  76. Lau, K. S. et al. Multi-scale in vivo systems analysis reveals the influence of immune cells on TNF-α-induced apoptosis in the intestinal epithelium. PLoS Biol. 10, e1001393 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Benecke, A., Gale, M. Jr & Katze, M. G. Dynamics of innate immunity are key to chronic immune activation in AIDS. Curr. Opin. HIV AIDS 7, 79–85 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Benecke, A. G. Critical dynamics in host–pathogen systems. Curr. Top. Microbiol. Immunol. 363, 235–259 (2013).

    CAS  PubMed  Google Scholar 

  79. Soulé, C. Graphic requirements for multistationarity. ComPlexUs 1, 123–133 (2003).

    Article  Google Scholar 

  80. Cinquin, O. & Demongeot, J. High-dimensional switches and the modelling of cellular differentiation. J. Theor. Biol. 233, 391–411 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Becavin, C., Tchitchek, N., Mintsa-Eya, C., Lesne, A. & Benecke, A. Improving the efficiency of multidimensional scaling in the analysis of high-dimensional data using singular value decomposition. Bioinformatics 27, 1413–1421 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Becavin, C. & Benecke, A. New dimensionality reduction methods for the representation of high dimensional 'omics' data. Expert Rev. Mol. Diagnost. 11, 27–34 (2011). A review that discusses the need for the development of dimensionality reduction and visualization methods, and presents an example of how existing techniques can be combined to overcome the current limitations. This review also discusses future directions in the field.

    Article  Google Scholar 

  83. Rasmussen, A. L. et al. Early transcriptional programming links progression to hepatitis C virus-induced severe liver disease in transplant patients. Hepatology 56, 17–27 (2012).

    Article  PubMed  CAS  Google Scholar 

  84. Diamond, D. L. et al. Proteome and computational analyses reveal new insights into the mechanisms of hepatitis C virus-mediated liver disease posttransplantation. Hepatology 56, 28–38 (2012).

    Article  PubMed  CAS  Google Scholar 

  85. Sonnenschein, N. et al. A network perspective on metabolic inconsistency. BMC Syst. Biol. 6, 41 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ponnapalli, S. P., Saunders, M. A., Van Loan, C. F. & Alter, O. A higher-order generalized singular value decomposition for comparison of global mRNA expression from multiple organisms. PLoS ONE 6, e28072 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Huang, S. S. & Fraenkel, E. Integrating proteomic, transcriptional, and interactome data reveals hidden components of signaling and regulatory networks. Sci. Signal. 2, ra40 (2009). The description of a computational method (based on the Steiner tree problem) that provides a general framework for building models of regulatory networks from high-throughput data sets.

    PubMed  PubMed Central  Google Scholar 

  88. Luksza, M., Lassig, M. & Berg, J. Significance analysis and statistical mechanics: an application to clustering. Phys. Rev. Lett. 105, 220601 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Josset, L. et al. Gene expression signature-based screening identifies new broadly effective influenza A antivirals. PLoS ONE 5, e13169 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Yang, W.-L. R., Lee, Y.-E., Chen, M.-H., Chao, K.-M. & Huang, C.-Y. F. In-silico drug screening and potential target identification for hepatocellular carcinoma using Support Vector Machines based on drug screening result. Gene 518, 201–208 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Hood, L. & Friend, S. H. Predictive, personalized, preventive, participatory (P4) cancer medicine. Nature Rev. Clin. Oncol. 8, 184–187 (2011).

    Article  Google Scholar 

  92. Bengoechea, J. A. Infection systems biology: from reactive to proactive (P4) medicine. Int. Microbiol. 15, 55–60 (2012).

    PubMed  Google Scholar 

  93. Southern, E. M. DNA microarrays. History and overview. Methods Mol. Biol. 170, 1–15 (2001).

    CAS  PubMed  Google Scholar 

  94. Gorreta, F., Carbone, W. & Barzaghi, D. in Molecular Profiling (eds Espina, V. & Liotta, L. A.) 89–105 (Humana, 2012).

    Book  Google Scholar 

  95. Li, W. & Ruan, K. MicroRNA detection by microarray. Anal. Bioanal. Chem. 394, 1117–1124 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Fouse, S. D., Nagarajan, R. P. & Costello, J. F. Genome-scale DNA methylation analysis. Epigenomics 2, 105–117 (2010).

    Article  PubMed  CAS  Google Scholar 

  97. Lam, C.-W., Lau, K.-C. & Tong, S.-F. Microarrays for personalized genomic medicine. Adv. Clin. Chem. 52, 1–18 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Metzker, M. L. Sequencing technologies — the next generation. Nature Rev. Genet. 11, 31–46 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nature Rev. Genet. 10, 57–63 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Martin, J. A. & Wang, Z. Next-generation transcriptome assembly. Nature Rev. Genet. 12, 671–682 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Park, P. J. ChIP-seq: advantages and challenges of a maturing technology. Nature Rev. Genet. 10, 669–680 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. König, J., Zarnack, K., Luscombe, N. M. & Ule, J. Protein–RNA interactions: new genomic technologies and perspectives. Nature Rev. Genet. 13, 77–83 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Collaborative-Cross-Consortium. The genome architecture of the Collaborative Cross mouse genetic reference population. Genetics 190, 389–401 (2012).

  104. Zou, F. et al. Quantitative trait locus analysis using recombinant inbred intercrosses: theoretical and empirical considerations. Genetics 170, 1299–1311 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank L. Josset for generating the networks in figure 3, and M. Heise and M. Ferris for providing the data used in box 3. Research in the author's laboratory is supported by Public Health Service grants R2400011172, R2400011157, P30DA015625, P51RR00166 and U54AI081680, and by federal funds from the US National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under contract HHSN272200800060C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Katze.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Complement system

Blood proteins that react with one another in a cascade to aid the ability of phagocytic cells to eliminate microorganisms. Complement proteins also have a role in the development of inflammation.

Small nucleolar RNAs

(snoRNAs). RNAs that guide the modification (for example, methylation or pseudouridylation) of other RNAs, particularly ribosomal RNAs.

PIWI-interacting RNAs

(piRNAs). Small RNAs that are thought to be involved in gene silencing through the formation of ribonucleoprotein complexes with PIWI proteins.

RIP–seq

Immunoprecipitation of RNA-binding proteins followed by high-throughput sequencing of the bound RNA.

CLIP–seq

(Crosslinking immunoprecipitation followed by high-throughput sequencing). A screening method used to identify RNA sequences that interact with either RNA-binding proteins or other RNAs.

Metabolic flux profiling

A measurement approach that uses liquid chromatography–tandem mass spectrometry to quantify the rate of conversion of biochemical molecules in a metabolic network after perturbing the system. Systems-level metabolic flux profiling is a high-throughput approach to quantifying changes in metabolic activity.

Short hairpin RNA

(shRNA). A type of RNA that forms a tight hairpin which has the ability to silence gene expression through RNAi.

Unfolded-protein response

A cellular stress response to the accumulation of unfolded proteins in the ER. The response is characterized by a signal transduction pathway that aims to restore homeostasis by limiting protein biosynthesis and increasing the abundance of molecular chaperones involved in protein folding.

Expression quantitative trait loci

(eQTLs). Genomic loci, as identified by gene expression profiling, that regulate mRNA expression. eQTLs are mapped by computationally connecting DNA sequence variation with variation in gene expression, providing information on how host genetics affects the function of molecular networks.

Structural equation modelling

A multivariate analysis technique for testing and estimating causal relationships among variables.

Betweenness centrality

A measure of the location of a gene in a network. Genes with high betweenness centrality, referred to as bottleneck genes, are located between and therefore connect different portions of the network (that is, different subnetworks).

Epistasis

The phenomenon in which the effects of one gene are modified by one or more other genes.

Network topology

The arrangement and connections of the various components of a network.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Law, G., Korth, M., Benecke, A. et al. Systems virology: host-directed approaches to viral pathogenesis and drug targeting. Nat Rev Microbiol 11, 455–466 (2013). https://doi.org/10.1038/nrmicro3036

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrmicro3036

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research