Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Correspondence
  • Published:

Reply

Nephrons are generated via a series of committed progenitors

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Zhang, F. et al. The Drosophila nephrocyte has a glomerular filtration system. Nat. Rev. Nephrol. http://dx.doi.org/10.1038/nrneph.2012.290-c1 (2014).

  2. Romagnani, P., Lasagni, L. & Remuzzi, G. Renal progenitors: an evolutionary conserved strategy for kidney regeneration. Nat. Rev. Nephrol. 9, 137–146 (2013).

    CAS  Google Scholar 

  3. Denholm, B. Shaping up for action: the path to physiological maturation in the renal tubules of Drosophila Organogenesis 9, 40–54 (2013).

  4. Na, J. & Cagan, R. The Drosophila nephrocyte: back on stage. J. Am. Soc. Nephrol. 24, 161–163 (2013).

    Article  CAS  Google Scholar 

  5. Weavers, H. et al. The insect nephrocyte is a podocyte-like cell with a filtration slit diaphragm. Nature 457, 322–326 (2009).

    Article  CAS  Google Scholar 

  6. Zhang, F., Zhao, Y., Chao, Y., Muir, K. & Han, Z. Cubilin and amnionless mediate protein reabsorption in Drosophila nephrocytes. J. Am. Soc. Nephrol. 24, 209–216 (2013).

    Article  CAS  Google Scholar 

  7. Zhang F., Zhao, Y. & Han, Z. An in vivo functional analysis system for renal gene discovery in Drosophila pericardial nephrocytes. J. Am. Soc. Nephrol. 24, 191–197 (2013).

    Article  Google Scholar 

  8. Ronconi, E. et al. Regeneration of glomerular podocytes by human renal progenitors. J. Am. Soc. Nephrol. 20, 322–332 (2009).

    Article  CAS  Google Scholar 

  9. Lindgren, D. et al. Isolation and characterization of progenitor-like cells from human renal proximal tubules. Am. J. Pathol. 178, 828–837 (2011).

    Article  Google Scholar 

  10. Angelotti, M. L. et al. Characterization of renal progenitors committed toward tubular lineage and their regenerative potential in renal tubular injury. Stem Cells 30, 1714–1725 (2012).

    Article  CAS  Google Scholar 

  11. Lazzeri, E. et al. Regenerative potential of embryonic renal multipotent progenitors in acute renal failure. J. Am. Soc. Nephrol. 18, 3128–3138 (2007).

    Article  CAS  Google Scholar 

  12. Romagnani, P. Stem cells and renal cell regeneration in acute kidney injury. Presented at the 51st ERA–EDTA Congress (2014).

  13. Romagnani, P. Podocyte regeneration: how it occurs and how to enhance it. Presented at the 10th International Podocyte Conference (2014).

  14. Rinkevich, Y. et al. In vivo clonal analysis reveals lineage-restricted progenitor characteristics in mammalian kidney development, maintenance, and regeneration. Cell Rep. 7, 1270–1283 (2014).

    Article  CAS  Google Scholar 

  15. Diep, C. Q. et al. Identification of adult nephron progenitors capable of kidney regeneration in zebrafish. Nature 470, 95–100 (2011).

    Article  Google Scholar 

  16. Kroeger, P. T. Jr & Wingert, R. A. Using zebrafish to study podocyte genesis during kidney development and regeneration. Genesis http://dx.doi.org/10.1002/dvg.22798.

  17. Zhang, Z. et al. A variant OSR1 allele which disturbs OSR1 mRNA expression in renal progenitor cells is associated with reduction of newborn kidney size and function. Hum. Mol. Genet. 20, 4167–4174 (2011).

    Article  CAS  Google Scholar 

  18. Sallustio, F. et al. miR-1915 and miR-1225-5p regulate the expression of CD133, PAX2 and TLR2 in adult renal progenitor cells. PLoS ONE 8, e68296 (2013).

    Article  CAS  Google Scholar 

  19. Lasagni, L. et al. Notch activation differentially regulates renal progenitors proliferation and differentiation toward the podocyte lineage in glomerular disorders. Stem Cells 28, 1674–1685 (2010).

    Article  Google Scholar 

  20. Li, Y., Cheng, C. N., Verdun, V. & Wingert, R. A. Zebrafish nephrogenesis is regulated by interactions between retinoic acid, mecom, and Notch signaling. Dev. Biol. 386, 111–122 (2014).

    Article  CAS  Google Scholar 

  21. Peired, A. et al. P. Proteinuria impairs podocyte regeneration by sequestering retinoic acid. J. Am. Soc. Nephrol. 24, 1756–1768 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors' work is supported by the European Community under the European Community's Seventh Framework Programme (FP7/2012-2016), grant number 305436.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Romagnani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romagnani, P., Lasagni, L. & Remuzzi, G. Nephrons are generated via a series of committed progenitors. Nat Rev Nephrol 10, 491 (2014). https://doi.org/10.1038/nrneph.2012.290-c2

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrneph.2012.290-c2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing