Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neddylation requires glycyl-tRNA synthetase to protect activated E2

Abstract

Neddylation is a post-translational modification that controls the cell cycle and proliferation by conjugating the ubiquitin-like protein NEDD8 to specific targets. Here we report that glycyl-tRNA synthetase (GlyRS), an essential enzyme in protein synthesis, also plays a critical role in neddylation. In human cells, knockdown of GlyRS, but not knockdown of a different tRNA synthetase, decreased the global level of neddylation and caused cell-cycle abnormality. This function of GlyRS is achieved through direct interactions with multiple components of the neddylation pathway, including NEDD8, E1, and E2 (Ubc12). Using various structural and functional approaches, we show that GlyRS binds the APPBP1 subunit of E1 and captures and protects activated E2 (NEDD8-conjugated Ubc12) before the activated E2 reaches a downstream target. Therefore, GlyRS functions as a chaperone that critically supports neddylation. This function is probably conserved in all eukaryotic GlyRS enzymes and may contribute to the strong association of GlyRS with cancer progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GlyRS binds NEDD8 and enhances neddylation.
Figure 2: GlyRS preferentially binds Ubc12N8.
Figure 3: GlyRS binds APPBP1 and captures newly released Ubc12N8.
Figure 4: GlyRS regulates the cell cycle by promoting cullin neddylation.
Figure 5: The active site is not essential to the role of GlyRS in neddylation.
Figure 6: Dual function of GlyRS in protein synthesis and neddylation.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Kamitani, T., Kito, K., Nguyen, H.P. & Yeh, E.T. Characterization of NEDD8, a developmentally down-regulated ubiquitin-like protein. J. Biol. Chem. 272, 28557–28562 (1997).

    Article  CAS  Google Scholar 

  2. Osaka, F. et al. Covalent modifier NEDD8 is essential for SCF ubiquitin-ligase in fission yeast. EMBO J. 19, 3475–3484 (2000).

    Article  CAS  Google Scholar 

  3. Tateishi, K., Omata, M., Tanaka, K. & Chiba, T. The NEDD8 system is essential for cell cycle progression and morphogenetic pathway in mice. J. Cell Biol. 155, 571–579 (2001).

    Article  CAS  Google Scholar 

  4. Kerscher, O., Felberbaum, R. & Hochstrasser, M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol. 22, 159–180 (2006).

    Article  CAS  Google Scholar 

  5. Liakopoulos, D., Doenges, G., Matuschewski, K. & Jentsch, S. A novel protein modification pathway related to the ubiquitin system. EMBO J. 17, 2208–2214 (1998).

    Article  CAS  Google Scholar 

  6. Osaka, F. et al. A new NEDD8-ligating system for cullin-4A. Genes Dev. 12, 2263–2268 (1998).

    Article  CAS  Google Scholar 

  7. Furukawa, M., Zhang, Y., McCarville, J., Ohta, T. & Xiong, Y. The CUL1 C-terminal sequence and ROC1 are required for efficient nuclear accumulation, NEDD8 modification, and ubiquitin ligase activity of CUL1. Mol. Cell. Biol. 20, 8185–8197 (2000).

    Article  CAS  Google Scholar 

  8. Huang, D.T. et al. E2-RING expansion of the NEDD8 cascade confers specificity to cullin modification. Mol. Cell 33, 483–495 (2009).

    Article  CAS  Google Scholar 

  9. Enchev, R.I., Schulman, B.A. & Peter, M. Protein neddylation: beyond cullin–RING ligases. Nat. Rev. Mol. Cell Biol. 16, 30–44 (2015).

    Article  CAS  Google Scholar 

  10. Soucy, T.A., Dick, L.R., Smith, P.G., Milhollen, M.A. & Brownell, J.E. The NEDD8 conjugation pathway and its relevance in cancer biology and therapy. Genes Cancer 1, 708–716 (2010).

    Article  CAS  Google Scholar 

  11. Welchman, R.L., Gordon, C. & Mayer, R.J. Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat. Rev. Mol. Cell Biol. 6, 599–609 (2005).

    Article  CAS  Google Scholar 

  12. Vijay-Kumar, S., Bugg, C.E. & Cook, W.J. Structure of ubiquitin refined at 1.8 A resolution. J. Mol. Biol. 194, 531–544 (1987).

    Article  CAS  Google Scholar 

  13. Bublitz, C. The properties of a glycyl-soluble-RNA synthetase from chick embryo. Biochim. Biophys. Acta 113, 158–166 (1966).

    Article  CAS  Google Scholar 

  14. Zhou, Q. et al. Orthogonal use of a human tRNA synthetase active site to achieve multifunctionality. Nat. Struct. Mol. Biol. 17, 57–61 (2010).

    Article  CAS  Google Scholar 

  15. Huang, D.T. et al. A unique E1-E2 interaction required for optimal conjugation of the ubiquitin-like protein NEDD8. Nat. Struct. Mol. Biol. 11, 927–935 (2004).

    Article  CAS  Google Scholar 

  16. Eletr, Z.M., Huang, D.T., Duda, D.M., Schulman, B.A. & Kuhlman, B. E2 conjugating enzymes must disengage from their E1 enzymes before E3-dependent ubiquitin and ubiquitin-like transfer. Nat. Struct. Mol. Biol. 12, 933–934 (2005).

    Article  CAS  Google Scholar 

  17. Xie, W., Nangle, L.A., Zhang, W., Schimmel, P. & Yang, X.L. Long-range structural effects of a Charcot-Marie-Tooth disease-causing mutation in human glycyl-tRNA synthetase. Proc. Natl. Acad. Sci. USA 104, 9976–9981 (2007).

    Article  CAS  Google Scholar 

  18. Scott, D.C. et al. Structure of a RING E3 trapped in action reveals ligation mechanism for the ubiquitin-like protein NEDD8. Cell 157, 1671–1684 (2014).

    Article  CAS  Google Scholar 

  19. Duhovny, D., Nussinov, R. & Wolfson, H.J. Efficient unbound docking of rigid molecules. Algorithms Bioinform 2452, 185–200 (2002).

    Article  Google Scholar 

  20. Schneidman-Duhovny, D., Inbar, Y., Nussinov, R. & Wolfson, H.J. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 33, W363–W367 (2005).

    Article  CAS  Google Scholar 

  21. Guo, R.T., Chong, Y.E., Guo, M. & Yang, X.L. Crystal structures and biochemical analyses suggest a unique mechanism and role for human glycyl-tRNA synthetase in Ap4A homeostasis. J. Biol. Chem. 284, 28968–28976 (2009).

    Article  CAS  Google Scholar 

  22. Pagano, M. et al. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269, 682–685 (1995).

    Article  CAS  Google Scholar 

  23. Toyoshima, H. & Hunter, T. p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 78, 67–74 (1994).

    Article  CAS  Google Scholar 

  24. Soucy, T.A. et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458, 732–736 (2009).

    Article  CAS  Google Scholar 

  25. Hengst, L. & Reed, S.I. Translational control of p27Kip1 accumulation during the cell cycle. Science 271, 1861–1864 (1996).

    Article  CAS  Google Scholar 

  26. Petroski, M.D. & Deshaies, R.J. Function and regulation of cullin–RING ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 6, 9–20 (2005).

    Article  CAS  Google Scholar 

  27. Cardozo, T. & Pagano, M. The SCF ubiquitin ligase: insights into a molecular machine. Nat. Rev. Mol. Cell Biol. 5, 739–751 (2004).

    Article  CAS  Google Scholar 

  28. Stanley, D.J. et al. Inhibition of a NEDD8 cascade restores restriction of HIV by APOBEC3G. PLoS Pathog. 8, e1003085 (2012).

    Article  CAS  Google Scholar 

  29. Mazauric, M.H. et al. Glycyl-tRNA synthetase from Thermus thermophilus: wide structural divergence with other prokaryotic glycyl-tRNA synthetases and functional inter-relation with prokaryotic and eukaryotic glycylation systems. Eur. J. Biochem. 251, 744–757 (1998).

    Article  CAS  Google Scholar 

  30. Dil Kuazi, A. et al. NEDD8 protein is involved in ubiquitinated inclusion bodies. J. Pathol. 199, 259–266 (2003).

    Article  Google Scholar 

  31. Mori, F. et al. Accumulation of NEDD8 in neuronal and glial inclusions of neurodegenerative disorders. Neuropathol. Appl. Neurobiol. 31, 53–61 (2005).

    Article  CAS  Google Scholar 

  32. Antonellis, A. et al. Glycyl tRNA synthetase mutations in Charcot-Marie-Tooth disease type 2D and distal spinal muscular atrophy type V. Am. J. Hum. Genet. 72, 1293–1299 (2003).

    Article  CAS  Google Scholar 

  33. Yao, P. & Fox, P.L. Aminoacyl-tRNA synthetases in medicine and disease. EMBO Mol. Med. 5, 332–343 (2013).

    Article  CAS  Google Scholar 

  34. Dubourg, O. et al. The G526R glycyl-tRNA synthetase gene mutation in distal hereditary motor neuropathy type V. Neurology 66, 1721–1726 (2006).

    Article  CAS  Google Scholar 

  35. Motley, W.W. et al. Charcot-Marie-Tooth-linked mutant GARS is toxic to peripheral neurons independent of wild-type GARS levels. PLoS Genet. 7, e1002399 (2011).

    Article  CAS  Google Scholar 

  36. He, W. et al. CMT2D neuropathy is linked to the neomorphic binding activity of glycyl-tRNA synthetase. Nature 526, 710–714 (2015).

    Article  CAS  Google Scholar 

  37. Stum, M. et al. An assessment of mechanisms underlying peripheral axonal degeneration caused by aminoacyl-tRNA synthetase mutations. Mol. Cell. Neurosci. 46, 432–443 (2011).

    Article  CAS  Google Scholar 

  38. Chairatvit, K. & Ngamkitidechakul, C. Control of cell proliferation via elevated NEDD8 conjugation in oral squamous cell carcinoma. Mol. Cell. Biochem. 306, 163–169 (2007).

    Article  CAS  Google Scholar 

  39. Salon, C. et al. Altered pattern of Cul-1 protein expression and neddylation in human lung tumours: relationships with CAND1 and cyclin E protein levels. J. Pathol. 213, 303–310 (2007).

    Article  CAS  Google Scholar 

  40. Podust, V.N. et al. A Nedd8 conjugation pathway is essential for proteolytic targeting of p27Kip1 by ubiquitination. Proc. Natl. Acad. Sci. USA 97, 4579–4584 (2000).

    Article  CAS  Google Scholar 

  41. Nakayama, K.I. & Nakayama, K. Ubiquitin ligases: cell-cycle control and cancer. Nat. Rev. Cancer 6, 369–381 (2006).

    Article  CAS  Google Scholar 

  42. Kobayashi, A. et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol. Cell. Biol. 24, 7130–7139 (2004).

    Article  CAS  Google Scholar 

  43. Kamura, T. et al. Activation of HIF1α ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex. Proc. Natl. Acad. Sci. USA 97, 10430–10435 (2000).

    Article  CAS  Google Scholar 

  44. Winston, J.T. et al. The SCFβ-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBα and β-catenin and stimulates IκBα ubiquitination in vitro. Genes Dev. 13, 270–283 (1999).

    Article  CAS  Google Scholar 

  45. Nishitani, H. et al. Two E3 ubiquitin ligases, SCF-Skp2 and DDB1-Cul4, target human Cdt1 for proteolysis. EMBO J. 25, 1126–1136 (2006).

    Article  CAS  Google Scholar 

  46. Sarantopoulos, J. et al. Phase I study of the investigational NEDD8-activating enzyme inhibitor pevonedistat (TAK-924/MLN4924) in patients with advanced solid tumors. Clin. Cancer Res. 22, 847–857 (2016).

    Article  CAS  Google Scholar 

  47. Swords, R.T. et al. Pevonedistat (MLN4924), a first-in-class NEDD8-activating enzyme inhibitor, in patients with acute myeloid leukaemia and myelodysplastic syndromes: a phase 1 study. Br. J. Haematol. 169, 534–543 (2015).

    Article  CAS  Google Scholar 

  48. Györffy, B. et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res. Treat. 123, 725–731 (2010).

    Article  Google Scholar 

  49. Williams, T.F., Mirando, A.C., Wilkinson, B., Francklyn, C.S. & Lounsbury, K.M. Secreted threonyl-tRNA synthetase stimulates endothelial cell migration and angiogenesis. Sci. Rep. 3, 1317 (2013).

    Article  Google Scholar 

  50. Kim, D.G. et al. Interaction of two translational components, lysyl-tRNA synthetase and p40/37LRP, in plasma membrane promotes laminin-dependent cell migration. FASEB J. 26, 4142–4159 (2012).

    Article  CAS  Google Scholar 

  51. Kim, D.G. et al. Chemical inhibition of prometastatic lysyl-tRNA synthetase-laminin receptor interaction. Nat. Chem. Biol. 10, 29–34 (2014).

    Article  CAS  Google Scholar 

  52. Huang, D.T. & Schulman, B.A. Expression, purification, and characterization of the E1 for human NEDD8, the heterodimeric APPBP1-UBA3 complex. Methods Enzymol. 398, 9–20 (2005).

    Article  CAS  Google Scholar 

  53. He, W. et al. Dispersed disease-causing neomorphic mutations on a single protein promote the same localized conformational opening. Proc. Natl. Acad. Sci. USA 108, 12307–12312 (2011).

    Article  CAS  Google Scholar 

  54. Sajish, M. et al. Trp-tRNA synthetase bridges DNA-PKcs to PARP-1 to link IFN-γ and p53 signaling. Nat. Chem. Biol. 8, 547–554 (2012).

    Article  CAS  Google Scholar 

  55. Xu, X. et al. Unique domain appended to vertebrate tRNA synthetase is essential for vascular development. Nat. Commun. 3, 681 (2012).

    Article  Google Scholar 

  56. Jin, J., Li, X., Gygi, S.P. & Harper, J.W. Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging. Nature 447, 1135–1138 (2007).

    Article  CAS  Google Scholar 

  57. Chalmers, M.J. et al. Probing protein ligand interactions by automated hydrogen/deuterium exchange mass spectrometry. Anal. Chem. 78, 1005–1014 (2006).

    Article  CAS  Google Scholar 

  58. Pascal, B.D. et al. HDX workbench: software for the analysis of H/D exchange MS data. J. Am. Soc. Mass Spectrom. 23, 1512–1521 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Schulman (St. Jude Children's Research Hospital) and W. Harper (Harvard Medical School) for providing plasmids and advice on the project. We thank W. He and H. Zhou (The Scripps Laboratories for tRNA Synthetase Research) for providing plasmids of GlyRS. We thank P. Schimmel, M.H. Nawaz, and other members of The Scripps Laboratories for tRNA Synthetase Research for advice, discussion, and technical support. This research was supported by US National Institutes of Health grant R01GM088278 (X.-L.Y.).

Author information

Authors and Affiliations

Authors

Contributions

X.-L.Y. and Z.M. designed experiments, analyzed data, and wrote the manuscript. Z.M. performed the molecular cloning, binding analysis, structural docking, bioinformatic analysis, and additional biochemical analysis. Z.M. and Q.Z. carried out protein purification. Z.M. and Z.L. performed the cell-cycle analysis. J.L. and P.R.G. performed the HDX analysis. Y.S. and L.S. contributed to biochemical analysis.

Corresponding author

Correspondence to Xiang-Lei Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Characterization of the GlyRS-NEDD8 interaction.

(a) Hydrogen-deuterium exchange (HDX) analysis of GlyRS in the presence of NEDD8. Changes in deuterium incorporation resulting from the NEDD8 interaction are mapped to the sequence and the crystal structure of GlyRS (PDB 2PME). (b,c) Di-glycine motif of NEDD8 is not essential for GlyRS. Biolayer interferometry analysis comparing GlyRS binding to the full-length NEDD8 (b) and the truncated NEDD8 lacking the C-terminal di-glycine motif (NEDD8ΔGG) (c). His-tagged NEDD8 proteins were immobilized to the Ni-NTA sensor tips. Tag-free GlyRS (yellow green, 250 nM; orange,500 nM) were used to detect the interaction with NEDD8.

Supplementary Figure 2 GlyRS does not affect Ube2F conjugation.

(a) Western blot analysis to detect N8-conjugation of Ube2F in HeLa cells transfected with plasmids expressing shRNAs against GlyRS (shGlyRS) or SerRS (shSerRS) or a control vector. (b) Biolayer interferometry analysis to compare the binding of Ubc12 and Ube2F (both at 1.0 µM) to immobilized GST-GlyRS.

Supplementary Figure 3 The catalytic domain of GlyRS is the major binding site for Ubc12.

(a) In vitro neddylation assay with γ-32P-ATP labeled NEDD8. (b) In vitro neddylation assay using fluorescein modified NEDD8. (c) GST pull-down analysis to detect the interaction of GST-Ubc12 with GlyRS and its truncated fragments. (d) Hydrogen-deuterium exchange (HDX) analysis of GlyRS in the presence of Ubc12. Changes in deuterium incorporation resulting from the Ubc12 interaction are mapped to the sequence and the crystal structure of GlyRS (PDB 2PME).

Supplementary Figure 4 GlyRS stabilizes Ubc12N8.

Time courses of Ubc12N8 degradation in the absence and presence of WT or Δ232-238 GlyRS. Gels were stained by coomassie blue and quantified with ImageJ.

Supplementary Figure 5 The ABD of GlyRS and the APPBP1 subunit of E1 are responsible for the GlyRS-E1 interaction.

(a) GST pull-down assay to detect the interaction of GST-APPBP1-UBA3 with GlyRS and its truncated fragments. (b) Molecular docking of GlyRS (PDB 2PME) and APPBP1-UBA3 (PDB 2NVU) by using Patchdock.

Supplementary Figure 6 GlyRS facilitates cullin neddylation.

(a) Modeling analysis suggesting that GlyRS is unlikely to interfere with NEDD8 transferring from Ubc12 to cullin. The complex structure of cullin1-Rbx1-Ubc12N8 is adapted from PDB 4P5O. (b) Biolayer interferometry analysis to detect the binding of cullin1-Rbx1 (5 μg/mL) or GlyRS (5 μg/mL) or both to the immobilized Ubc12N8. Black dotted lines indicate the calculated sum of the binding curves for cullin1-Rbx1 and for GlyRS, respectively. (c) In vitro neddylation assay to detect the activity of WT and Δ232-238 GlyRS in promoting cullin1 neddylation.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 986 kb)

Supplementary Data Set 1

Combined raw gels and blots (PDF 6568 kb)

Supplementary Data Set 2

Model of the GlyRS–Ubc12N8 complex (PDB 651 kb)

Supplementary Data Set 3

Model of the GlyRS–E1 complex (PDB 950 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, Z., Zhang, Q., Liu, Z. et al. Neddylation requires glycyl-tRNA synthetase to protect activated E2. Nat Struct Mol Biol 23, 730–737 (2016). https://doi.org/10.1038/nsmb.3250

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsmb.3250

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing