Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Analysis of Rho GTPase expression in T-ALL identifies RhoU as a target for Notch involved in T-ALL cell migration

Abstract

NOTCH1 is frequently mutated in T-cell acute lymphoblastic leukaemia (T-ALL), and can stimulate T-ALL cell survival and proliferation. Here we explore the hypothesis that Notch1 also alters T-ALL cell migration. Rho GTPases are well known to regulate cell adhesion and migration. We have analysed the expression levels of Rho GTPases in primary T-ALL samples compared with normal T cells by quantitative PCR. We found that 5 of the 20 human Rho genes are highly and consistently upregulated in T-ALL, and 3 further Rho genes are expressed in T-ALL but not detectable in normal T cells. Of these, RHOU expression is highly correlated with the expression of the Notch1 target DELTEX-1. Inhibition of Notch1 signalling with a γ-secretase inhibitor (GSI) or Notch1 RNA interference reduced RhoU expression in T-ALL cells, whereas constitutively active Notch1 increased RhoU expression. In addition, Notch1 or RhoU depletion, or GSI treatment, inhibits T-ALL cell adhesion, migration and chemotaxis. These results indicate that NOTCH1 mutation stimulates T-ALL cell migration through RhoU upregulation that could contribute to the leukaemia cell dissemination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Pieters R, Carroll WL . Biology and treatment of acute lymphoblastic leukemia. Pediatr Clin North Am 2008; 55: 1–20.

    Article  Google Scholar 

  2. Aifantis I, Raetz E, Buonamici S . Molecular pathogenesis of T-cell leukaemia and lymphoma. Nat Rev Immunol 2008; 8: 380–390.

    Article  CAS  Google Scholar 

  3. Crazzolara R, Kreczy A, Mann G, Heitger A, Eibl G, Fink FM et al. High expression of the chemokine receptor CXCR4 predicts extramedullary organ infiltration in childhood acute lymphoblastic leukaemia. Br J Haematol 2001; 115: 545–553.

    Article  CAS  Google Scholar 

  4. Bhojwani D, Howard SC, Pui CH . High-risk childhood acute lymphoblastic leukemia. Clin Lymphoma Myeloma 2009; 9 (Suppl 3): S222–S230.

    Article  Google Scholar 

  5. Weng AP, Ferrando AA, Lee W, Morris 4th JP, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    Article  CAS  Google Scholar 

  6. van Grotel M, Meijerink JP, van Wering ER, Langerak AW, Beverloo HB, Buijs-Gladdines JG et al. Prognostic significance of molecular-cytogenetic abnormalities in pediatric T-ALL is not explained by immunophenotypic differences. Leukemia 2008; 22: 124–131.

    Article  CAS  Google Scholar 

  7. Hayday AC, Pennington DJ . Key factors in the organized chaos of early T cell development. Nat Immunol 2007; 8: 137–144.

    Article  CAS  Google Scholar 

  8. Vicente R, Swainson L, Marty-Gres S, De Barros SC, Kinet S, Zimmermann VS et al. Molecular and cellular basis of T cell lineage commitment. Semin Immunol 2010; 22: 270–275.

    Article  CAS  Google Scholar 

  9. Aster JC, Blacklow SC, Pear WS . Notch signalling in T-cell lymphoblastic leukaemia/lymphoma and other haematological malignancies. J Pathol 2011; 223: 262–273.

    Article  CAS  Google Scholar 

  10. Ferrando AA . The role of NOTCH1 signaling in T-ALL. Hematology Am Soc Hematol Educ Program 2009; 353–361.

    Article  Google Scholar 

  11. Buonamici S, Trimarchi T, Ruocco MG, Reavie L, Cathelin S, Mar BG et al. CCR7 signalling as an essential regulator of CNS infiltration in T-cell leukaemia. Nature 2009; 459: 1000–1004.

    Article  CAS  Google Scholar 

  12. Van Hennik PB, Hordijk PL . Rho GTPases in hematopoietic cells. Antioxid Redox Signal 2005; 7: 1440–1455.

    Article  CAS  Google Scholar 

  13. Tybulewicz VL, Henderson RB . Rho family GTPases and their regulators in lymphocytes. Nat Rev Immunol 2009; 9: 630–644.

    Article  CAS  Google Scholar 

  14. Boureux A, Vignal E, Faure S, Fort P . Evolution of the Rho family of ras-like GTPases in eukaryotes. Mol Biol Evol 2007; 24: 203–216.

    Article  CAS  Google Scholar 

  15. Chang FK, Sato N, Kobayashi-Simorowski N, Yoshihara T, Meth JL, Hamaguchi M . DBC2 is essential for transporting vesicular stomatitis virus glycoprotein. J Mol Biol 2006; 364: 302–308.

    Article  CAS  Google Scholar 

  16. Aspenstrom P, Ruusala A, Pacholsky D . Taking Rho GTPases to the next level: the cellular functions of atypical Rho GTPases. Exp Cell Res 2007; 313: 3673–3679.

    Article  Google Scholar 

  17. Vega FM, Ridley AJ . Rho GTPases in cancer cell biology. FEBS Lett 2008; 582: 2093–2101.

    Article  CAS  Google Scholar 

  18. Ellenbroek SI, Collard JG . Rho GTPases: functions and association with cancer. Clin Exp Metastasis 2007; 24: 657–672.

    Article  CAS  Google Scholar 

  19. Symons M, Segall JE . Rac and Rho driving tumor invasion: who's at the wheel? Genome Biol 2009; 10: 213.

    Article  Google Scholar 

  20. Parri M, Chiarugi P . Rac and Rho GTPases in cancer cell motility control. Cell Commun Signal 2010; 8: 23.

    Article  Google Scholar 

  21. Heasman SJ, Carlin LM, Cox S, Ng T, Ridley AJ . Coordinated RhoA signaling at the leading edge and uropod is required for T cell transendothelial migration. J Cell Biol 2010; 190: 553–563.

    Article  CAS  Google Scholar 

  22. O’Neil J, Grim J, Strack P, Rao S, Tibbitts D, Winter C et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med 2007; 204: 1813–1824.

    Article  Google Scholar 

  23. Palomero T, Odom DT, O’Neil J, Ferrando AA, Margolin A, Neuberg DS et al. Transcriptional regulatory networks downstream of TAL1/SCL in T-cell acute lymphoblastic leukemia. Blood 2006; 108: 986–992.

    Article  CAS  Google Scholar 

  24. Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med 2007; 13: 1203–1210.

    Article  CAS  Google Scholar 

  25. Wolfe MS . Secretase in biology and medicine. Semin Cell Dev Biol 2009; 20: 219–224.

    Article  CAS  Google Scholar 

  26. Heasman SJ, Ridley AJ . Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 2008; 9: 690–701.

    Article  CAS  Google Scholar 

  27. Takesono A, Heasman SJ, Wojciak-Stothard B, Garg R, Ridley AJ . Microtubules regulate migratory polarity through Rho/ROCK signaling in T cells. PLoS One 2010; 5: e8774.

    Article  Google Scholar 

  28. Infante E, Heasman SJ, Ridley AJ . Statins inhibit T-acute lymphoblastic leukemia cell adhesion and migration through Rap1b. J Leukoc Biol 2011; 89: 577–586.

    Article  CAS  Google Scholar 

  29. Aspenstrom P, Fransson A, Saras J . Rho GTPases have diverse effects on the organization of the actin filament system. Biochem J 2004; 377: 327–337.

    Article  Google Scholar 

  30. Chuang YY, Valster A, Coniglio SJ, Backer JM, Symons M . The atypical Rho family GTPase Wrch-1 regulates focal adhesion formation and cell migration. J Cell Sci 2007; 120: 1927–1934.

    Article  CAS  Google Scholar 

  31. Aronheim A, Broder YC, Cohen A, Fritsch A, Belisle B, Abo A . Chp, a homologue of the GTPase Cdc42Hs, activates the JNK pathway and is implicated in reorganizing the actin cytoskeleton. Curr Biol 1998; 8: 1125–1128.

    Article  CAS  Google Scholar 

  32. Brazier H, Pawlak G, Vives V, Blangy A . The Rho GTPase Wrch1 regulates osteoclast precursor adhesion and migration. Int J Biochem Cell Biol 2009; 41: 1391–1401.

    Article  CAS  Google Scholar 

  33. Fort P, Guemar L, Vignal E, Morin N, Notarnicola C, de Santa Barbara P et al. Activity of the RhoU/Wrch1 GTPase is critical for cranial neural crest cell migration. Dev Biol 2011; 350: 451–463.

    Article  CAS  Google Scholar 

  34. Weisz Hubsman M, Volinsky N, Manser E, Yablonski D, Aronheim A . Autophosphorylation-dependent degradation of Pak1, triggered by the Rho-family GTPase, Chp. Biochem J 2007; 404: 487–497.

    Article  CAS  Google Scholar 

  35. Arias-Romero LE, Chernoff J . A tale of two Paks. Biol Cell 2008; 100: 97–108.

    Article  CAS  Google Scholar 

  36. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 2002; 1: 75–87.

    Article  CAS  Google Scholar 

  37. Moellering RE, Cornejo M, Davis TN, Del Bianco C, Aster JC, Blacklow SC et al. Direct inhibition of the NOTCH transcription factor complex. Nature 2009; 462: 182–188.

    Article  CAS  Google Scholar 

  38. Tao W, Pennica D, Xu L, Kalejta RF, Levine AJ . Wrch-1, a novel member of the Rho gene family that is regulated by Wnt-1. Genes Dev 2001; 15: 1796–1807.

    Article  CAS  Google Scholar 

  39. Weerkamp F, van Dongen JJ, Staal FJ . Notch and Wnt signaling in T-lymphocyte development and acute lymphoblastic leukemia. Leukemia 2006; 20: 1197–1205.

    Article  CAS  Google Scholar 

  40. Fueller F, Kubatzky KF . The small GTPase RhoH is an atypical regulator of haematopoietic cells. Cell Commun Signal 2008; 6: 6.

    Article  Google Scholar 

  41. Wang H, Zeng X, Fan Z, Lim B . RhoH plays distinct roles in T-cell migrations induced by different doses of SDF1α. Cell Signal 2010; 22: 1022–1032.

    Article  CAS  Google Scholar 

  42. Berthold J, Schenkova K, Rivero F . Rho GTPases of the RhoBTB subfamily and tumorigenesis. Acta Pharmacol Sin 2008; 29: 285–295.

    Article  CAS  Google Scholar 

  43. Berthold J, Schenkova K, Ramos S, Miura Y, Furukawa M, Aspenstrom P et al. Characterization of RhoBTB-dependent Cul3 ubiquitin ligase complexes-evidence for an autoregulatory mechanism. Exp Cell Res 2008; 314: 3453–3465.

    Article  CAS  Google Scholar 

  44. Riou P, Villalonga P, Ridley AJ . Rnd proteins: multifunctional regulators of the cytoskeleton and cell cycle progression. Bioessays 2010; 32: 986–992.

    Article  CAS  Google Scholar 

  45. Gomez del Pulgar T, Benitah SA, Valeron PF, Espina C, Lacal JC . Rho GTPase expression in tumourigenesis: evidence for a significant link. Bioessays 2005; 27: 602–613.

    Article  Google Scholar 

  46. Ridley AJ . Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol 2006; 16: 522–529.

    Article  CAS  Google Scholar 

  47. Huang M, Prendergast GC . RhoB in cancer suppression. Histol Histopathol 2006; 21: 213–218.

    CAS  PubMed  Google Scholar 

  48. Ono Y, Fukuhara N, Yoshie O . Transcriptional activity of TAL1 in T cell acute lymphoblastic leukemia (T-ALL) requires RBTN1 or -2 and induces TALLA1, a highly specific tumor marker of T-ALL. J Biol Chem 1997; 272: 4576–4581.

    Article  CAS  Google Scholar 

  49. Graux C, Cools J, Michaux L, Vandenberghe P, Hagemeijer A . Cytogenetics and molecular genetics of T-cell acute lymphoblastic leukemia: from thymocyte to lymphoblast. Leukemia 2006; 20: 1496–1510.

    Article  CAS  Google Scholar 

  50. Yanez-Mo M, Barreiro O, Gordon-Alonso M, Sala-Valdes M, Sanchez-Madrid F . Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes. Trends Cell Biol 2009; 19: 434–446.

    Article  CAS  Google Scholar 

  51. Schmittgen TD, Livak KJ . Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 2008; 3: 1101–1108.

    Article  CAS  Google Scholar 

  52. de Hoon MJ, Imoto S, Nolan J, Miyano S . Open source clustering software. Bioinformatics 2004; 20: 1453–1454.

    Article  CAS  Google Scholar 

  53. Saldanha AJ . Java Treeview--extensible visualization of microarray data. Bioinformatics 2004; 20: 3246–3248.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Leukaemia and Lymphoma Research UK, Cancer Research UK and King's College London British Heart Foundation Centre of Excellence. EI was supported by the Department of Health via National Institute for Health Research (NIHR) Comprehensive Biomedical Research Centre Award to Guy's and St Thomas’ NHS Foundation Trust in partnership with King's College London and King's College Hospital NHS Foundation Trust. We are grateful to Sarah Heasman for scientific discussion and guidance; Ritu Garg and Katrina Soderquest for technical assistance; Katherine Lawler for advice on statistical analysis; and Matthew Arno and Estibaliz Aldecoa-otalora Astarloa for assistance and advice on qPCR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A J Ridley.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhavsar, P., Infante, E., Khwaja, A. et al. Analysis of Rho GTPase expression in T-ALL identifies RhoU as a target for Notch involved in T-ALL cell migration. Oncogene 32, 198–208 (2013). https://doi.org/10.1038/onc.2012.42

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/onc.2012.42

Keywords

This article is cited by

Search

Quick links