Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Defective O-mannosyl glycan synthesis in dystroglycanopathies: pathogenesis and therapeutic frontiers

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dystrophin–glycoprotein complex (DGC) and dystroglycanopathies.
Fig. 2: Structural diversity and biosynthesis of core M1/M2/M3 glycans in mammals.

References

  1. Kanagawa M, Toda T. The genetic and molecular basis of muscular dystrophy: roles of cell-matrix linkage in the pathogenesis. J Hum Genet. 2006;51:915–26.

    Article  CAS  PubMed  Google Scholar 

  2. Kanagawa M. Dystroglycanopathy: From Elucidation of Molecular and Pathological Mechanisms to Development of Treatment Methods. Int J Mol Sci. 2021;22:13162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ibraghimov-Beskrovnaya O, Ervasti JM, Leveille CJ, Slaughter CA, Sernett SW, Campbell KP. Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature. 1992;355:696–702.

    Article  CAS  PubMed  Google Scholar 

  4. Chiba A, Matsumura K, Yamada H, Inazu T, Shimizu T, Kusunoki S, et al. Structures of sialylated O-linked oligosaccharides of bovine peripheral nerve alpha-dystroglycan: the role of a novel O-mannosyl-type oligosaccharide in the binding of alpha-dystroglycan with laminin. J Biol Chem. 1997;272:2156–62.

    Article  CAS  PubMed  Google Scholar 

  5. Williams SE, Noel M, Lehoux S, Cetinbas M, Xavier RJ, Sadreyev RI, et al. Mammalian brain glycoproteins exhibit diminished glycan complexity compared to other tissues. Nat Commun. 2022;13:275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yaji S, Manya H, Nakagawa N, Takematsu H, Endo T, Kannagi R, et al. Major glycan structure underlying expression of the Lewis X epitope in the developing brain is O-mannose-linked glycans on phosphacan/RPTPb. eta Glycobiol. 2015;25:376–85.

    Article  CAS  Google Scholar 

  7. Larsen ISB, Narimatsu Y, Joshi HJ, Yang Z, Harrison OJ, Brasch J, et al. Mammalian O-mannosylation of cadherins and plexins is independent of protein O-mannosyltransferases 1 and 2. J Biol Chem. 2017;292:11586–98.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ervasti JM, Campbell KP. A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J Cell Biol. 1993;122:809–23.

    Article  CAS  PubMed  Google Scholar 

  9. Campanelli JT, Roberds SL, Campbell KP, Scheller RH. A role for dystrophin-associated glycoproteins and utrophin in agrin-induced AChR clustering. Cell. 1994;77:663–74.

    Article  CAS  PubMed  Google Scholar 

  10. Gee SH, Montanaro F, Lindenbaum MH, Carbonetto S. Dystroglycan-alpha, a dystrophin-associated glycoprotein, is a functional agrin receptor. Cell. 1994;77:675–86.

    Article  CAS  PubMed  Google Scholar 

  11. Sugita S, Saito F, Tang J, Satz J, Campbell K, Südhof TC. A stoichiometric complex of neurexins and dystroglycan in brain. J Cell Biol.2001;154:435-45.

  12. Talts JF, Andac Z, Göhring W, Brancaccio A, Timpl R. Binding of the G domains of laminin alpha1 and alpha2 chains and perlecan to heparin, sulfatides, α-dystroglycan and several extracellular matrix proteins. EMBO J. 1999;18:863–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sato S, Omori Y, Katoh K, Kondo M, Kanagawa M, Miyata K. Pikachurin, a dystroglycan ligand, is essential for photoreceptor ribbon synapse formation. Nat Neurosci. 2008;11:923–31.

    Article  CAS  PubMed  Google Scholar 

  14. Kanagawa M, Toda T. Ribitol-phosphate—a newly identified posttranslational glycosylation unit in mammals: structure, modification enzymes and relationship to human diseases. J Biochem. 2018;163:359–69.

    Article  CAS  PubMed  Google Scholar 

  15. Manya H, Chiba A, Yoshida A, Wang X, Chiba Y, Jigami Y, et al. Demonstration of mammalian protein O-mannosyltransferase activity: coexpression of POMT1 and POMT2 required for enzymatic activity. Proc Natl Acad Sci USA. 2004;101:500–5.

    Article  CAS  PubMed  Google Scholar 

  16. Yoshida A, Kobayashi K, Manya H, Taniguchi K, Kano H, Mizuno M, et al. Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. Dev Cell. 2001;1:717–24.

    Article  CAS  PubMed  Google Scholar 

  17. Yoshida-Moriguchi T, Willer T, Anderson ME, Venzke D, Whyte T, Muntoni F, et al. SGK196 is a glycosylation-specific O-mannose kinase required for dystroglycan function. Science. 2013;341:896–9.

    Article  CAS  PubMed  Google Scholar 

  18. Kanagawa M, Kobayashi K, Tajiri M, Manya H, Kuga A, Yamaguchi Y, et al. Identification of a post-translational modification with ribitol-phosphate and its defect in muscular dystrophy. Cell Rep. 2016;14:2209–23.

    Article  CAS  PubMed  Google Scholar 

  19. Manya H, Yamaguchi Y, Kanagawa M, Kobayashi K, Tajiri M, Akasaka-Manya K, et al. The muscular dystrophy gene TMEM5 encodes a ribitol β1,4-xylosyltransferase required for the functional glycosylation of dystroglycan. J Biol Chem. 2016;291:24618–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Willer T, Inamori K, Venzke D, Harvey C, Morgensen G, Hara Y, et al. The glucuronyltransferase B4GAT1 is required for initiation of LARGE-mediated α-dystroglycan functional glycosylation. Elife. 2014;3:e03941.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Inamori K, Yoshida-Moriguchi T, Hara Y, Anderson ME, Yu L, Campbell KP. Dystroglycan function requires xylosyl- and glucuronyltransferase activities of LARGE. Science. 2012;335:93–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Briggs DC, Yoshida-Moriguchi T, Zheng T, Venzke D, Anderson ME, Strazzulli A, et al. Structural basis of laminin binding to the LARGE glycans on dystroglycan. Nat Chem Biol. 2016;12:810–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Manya H, EndoT. Glycosylation with ribitol-phosphate in mammals. New insights into O-mannosyl glycan Biochim Biophys Acta. 2017;1861:2462–72.

    CAS  Google Scholar 

  24. Reelfs AM, Stephan CM, Czech TM, Cox MO, Joseph S, Darbro DW, et al. UDP-glucose dehydrogenase variants cause dystroglycanopathy. Ann Clin Transl Neurol. In press 2025.

  25. Barone R, Aiello C, Race V, Morava E, Foulquier F, Riemersma M, et al. DPM2-CDG: a muscular dystrophy-dystroglycanopathy syndrome with severe epilepsy. Ann Neurol. 2012;72:550–8.

    Article  CAS  PubMed  Google Scholar 

  26. Lefeber DJ, Schönberger J, Morava E, Guillard M, Huyben KM, Verrijp K, et al. Deficiency of Dol-P-Man synthase subunit DPM3 bridges the congenital disorders of glycosylation with the dystroglycanopathies. Am J Hum Genet. 2009;85:76–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang AC, Ng BG, Moore SA, Rush J, Waechter CJ, Raymond KM, et al. Congenital disorder of glycosylation due to DPM1 mutations presenting with dystroglycanopathy-type congenital muscular dystrophy. Mol Genet Metab. 2013;110:345–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lefeber DJ, de Brouwer AP, Morava E, Riemersma M, Schuurs-Hoeijmakers JH, Absmanner B, et al. Autosomal recessive dilated cardiomyopathy due to DOLK mutations results from abnormal dystroglycan O-mannosylation. PLoS Genet. 2011;7:e1002427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Carss KJ, Stevens E, Foley AR, Cirak S, Riemersma M, Torelli S, et al. Mutations in GDP-mannose pyrophosphorylase B cause congenital and limb-girdle muscular dystrophies associated with hypoglycosylation of α-dystroglycan. Am J Hum Genet. 2013;93:29–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kuwabara N, Manya H, Yamada T, Tateno H, Kanagawa M, Kobayashi K, et al. Carbohydrate-binding domain of the POMGnT1 stem region modulates O-mannosylation sites of alpha-dystroglycan. Proc Natl Acad Sci USA. 2016;113:9280–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xiong H, Kobayashi K, Tachikawa M, Manya H, Takeda S, Chiyonobu T, et al. Molecular interaction between fukutin and POMGnT1 in the glycosylation pathway of alpha-dystroglycan. Biochem Biophys Res Commun. 2006;350:935–41.

    Article  CAS  PubMed  Google Scholar 

  32. Hara Y, Balci-Hayta B, Yoshida-Moriguchi T, Kanagawa M, Beltrán-Valero de Bernabé D, Gündeşli H, et al. A dystroglycan mutation associated with limb-girdle muscular dystrophy. N Engl J Med. 2011;364:939–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ujihara Y, Kanagawa M, Mohri S, Takatsu S, Kobayashi K, Toda T, et al. Elimination of fukutin reveals cellular and molecular pathomechanisms in muscular dystrophy-associated heart failure. Nat Commun. 2019;10:5754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moore SA, Saito F, Chen J, Michele DE, Henry MD, Messing A, et al. Deletion of brain dystroglycan recapitulates aspects of congenital muscular dystrophy. Nature. 2002;418:422–5.

    Article  CAS  PubMed  Google Scholar 

  35. Sudo A, Kanagawa M, Kondo M, Ito C, Kobayashi K, Endo M, et al. Temporal requirement of dystroglycan glycosylation during brain development and rescue of severe cortical dysplasia via gene delivery in the fetal stage. Hum Mol Genet. 2018;27:1174–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jahncke JN, Wright KM. The many roles of dystroglycan in nervous system development and function: Dystroglycan and neural circuit development. Dev Dyn. 2023;252:61–80.

    Article  CAS  PubMed  Google Scholar 

  37. Han R, Kanagawa M, Yoshida-Moriguchi T, Rader EP, Ng RA, Michele DE, et al. Basal lamina strengthens cell membrane integrity via the laminin G domain-binding motif of α-dystroglycan. Proc Natl Acad Sci USA. 2009;106:12573–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kanagawa M, Yu CC, Ito C, Fukada S, Hozoji-Inada M, Chiyo T, et al. Impaired viability of muscle precursor cells in muscular dystrophy with glycosylation defects and amelioration of its severe phenotype by limited gene expression. Hum Mol Genet. 2013;22:3003–15.

    Article  CAS  PubMed  Google Scholar 

  39. Kobayashi K, Nakahori Y, Miyake M, Matsumura K, Kondo-Iida E, Nomura Y, et al. An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature. 1998;394:388–92.

    Article  CAS  PubMed  Google Scholar 

  40. Taniguchi-Ikeda M, Kobayashi K, Kanagawa M, Yu CC, Mori K, Oda T, et al. Pathogenic exon-trapping by SVA retrotransposon and rescue in Fukuyama muscular dystrophy. Nature. 2011;478:127–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cataldi MP, Lu P, Blaeser A, Lu QL. Ribitol restores functionally glycosylated a-dystroglycan and improves muscle function in dystrophic FKRP-mutant mice. Nat Commun. 2018;9:3448.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tokuoka H, Imae R, Nakashima H, Manya H, Masuda C, Hoshino S, et al. CDP-ribitol prodrug treatment ameliorates ISPD-deficient muscular dystrophy mouse model. Nat Commun. 2022;13:1847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HM and MK: Writing—original draft preparation, review, and editing.

Corresponding author

Correspondence to Hiroshi Manya.

Ethics declarations

Competing interests

MK reports receiving a collaborative research grant from JCR Pharmaceuticals Co Ltd.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manya, H., Kanagawa, M. Defective O-mannosyl glycan synthesis in dystroglycanopathies: pathogenesis and therapeutic frontiers. J Hum Genet (2025). https://doi.org/10.1038/s10038-025-01387-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s10038-025-01387-1

Search

Quick links