Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

From genomic insights to clinical care in corneal disorders

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Shows the flow chart depicting the translational genomics framework for corneal disease: from discovery to targeted therapy.

References

  1. Prašnikar E, Stunf Pukl S. How “Omics” studies contribute to a better understanding of Fuchs’ endothelial corneal dystrophy. Curr Issues Mol Biol. 2025;47:135. https://doi.org/10.3390/cimb47030135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhao JY, He YX, Wu ML, Wang RQ. The application of high-throughput sequencing technology in corneal diseases. Int Ophthalmol. 2024;44:53. https://doi.org/10.1007/s10792-024-03049-1.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Khawaja AP, Rojas Lopez KE, Hardcastle AJ. Genetic variants associated with corneal biomechanical properties and potentially conferring susceptibility to keratoconus in a genome-wide association study. JAMA Ophthalmol. 2019;137:1005–12. https://doi.org/10.1001/jamaophthalmol.2019.2058.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chung DD, Frausto RF, Lin BR, Hanser EM, Cohen Z, Aldave AJ. Transcriptomic profiling of posterior polymorphous corneal dystrophy. Invest Ophthalmol Vis Sci. 2017;58:3202–14. https://doi.org/10.1167/iovs.17-21423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hardcastle AJ, Liskova P, Bykhovskaya Y. A multi-ethnic genome-wide association study implicates collagen matrix integrity and cell differentiation pathways in keratoconus. Commun Biol. 2021;4:266. https://doi.org/10.1038/s42003-021-01784-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cai J, Estes A, Liu Y. Omics analyses in keratoconus: from transcriptomics to proteomics. Curr Ophthalmol Rep. 2020;8:216–25. https://doi.org/10.1007/s40135-020-00253-x.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Winton HL, Bidwell JL, Armitage WJ. Thrombospondin-1 polymorphisms influence risk of corneal allograft rejection. Invest Ophthalmol Vis Sci. 2014;55:2115–20. https://doi.org/10.1167/iovs.13-13681.

    Article  CAS  PubMed  Google Scholar 

  8. Gupta PK, Toyos R, Sheppard JD, Toyos M, Mah FS, Bird B, et al. Tolerability of current treatments for dry eye disease: a review of approved and investigational therapies. Clin Ophthalmol. 2024;18:2283–302. https://doi.org/10.2147/OPTH.S465143.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the NIH Fogarty International Center (D43AG069077).

Author information

Authors and Affiliations

Authors

Contributions

AV: Concept, Drafting and Revision. MR: Supervision and review.

Corresponding author

Correspondence to Anitha Venugopal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venugopal, A., Ravindran, M. From genomic insights to clinical care in corneal disorders. Eye 39, 2619–2621 (2025). https://doi.org/10.1038/s41433-025-03912-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41433-025-03912-0

Search

Quick links