Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Utilization of artificial intelligence in Men’s Health: Opportunities for innovation and quality improvement

Abstract

Artificial intelligence (AI) is reshaping the landscape of men’s health by enhancing diagnostic accuracy, personalizing treatment strategies, and improving clinical efficiency. This narrative review explores the applications and ethical considerations of AI technologies, including machine learning, deep learning, and natural language processing, in key areas of men’s health such as fertility, erectile dysfunction, Peyronie’s disease, testosterone deficiency, and premature ejaculation. In reproductive medicine AI improves sperm morphology assessment, embryo selection, and prediction of seminal quality, offering more objective and accurate alternatives to traditional methods. For erectile dysfunction, AI supports diagnosis through advanced imaging, wearable sensors, and predictive modeling, while also contributing to drug discovery. In the context of Peyronie’s disease, AI enhances curvature assessment and three-dimensional modeling, improving diagnostic precision and surgical planning. AI also holds promise in improving the evaluation of testosterone deficiency by optimizing symptom questionnaires. Furthermore, AI-powered chatbots are emerging as accessible tools for patient education across various men’s health topics, including pre-consultation support for conditions such as premature ejaculation and vasectomy counseling. Despite AI’s advancements in men’s health, challenges remain in ensuring ethical implementation, protecting data privacy, patient autonomy, and promoting algorithm transparency. This review highlights the transformative potential of AI in the future of men’s health while emphasizing the importance of responsible integration guided by clinical validation, regulatory oversight, and adherence to ethical principles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Artificial Intelligence Applications in Men’s Health.

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Bajwa J, Munir U, Nori A, Williams B. Artificial intelligence in healthcare: transforming the practice of medicine. Future Healthc J. 2021;8:e188–94.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Venishetty N, Alkassis M, Raheem O. The role of artificial intelligence in male infertility: evaluation and treatment: a narrative review. Uro. 2024;4:23–35.

    Article  Google Scholar 

  3. Mouhawasse E, Haff CW, Kumar P, Lack B, Chu K, Bansal U, et al. Can AI chatbots accurately answer patient questions regarding vasectomies? Int J Impot Res. 2024;1–3. https://doi.org/10.1038/s41443-024-00970-y.

  4. Razdan S, Siegal AR, Brewer Y, Sljivich M, Valenzuela RJ. Assessing chatGPT’s ability to answer questions pertaining to erectile dysfunction: can our patients trust it? Int J Impot Res. 2024;36:734–40.

    Article  PubMed  Google Scholar 

  5. Sarker IH. Machine learning: algorithms, real-world applications and research directions. Sn Comput Sci. 2021;2:160.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Agarwal A, Henkel R, Huang CC, Lee MS. Automation of human semen analysis using a novel artificial intelligence optical microscopic technology. Andrologia. 2019;51:e13440.

    Article  PubMed  Google Scholar 

  7. Shah M, Naik N, Somani BK, Hameed BZ. Artificial intelligence (AI) in urology-current use and future directions: an iTRUE study. Turk J Urol. 2020;46:S27–39.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hanassab S, Nelson SM, Akbarov A, Yeung AC, Hramyka A, Alhamwi T, et al. Explainable artificial intelligence to identify follicles that optimize clinical outcomes during assisted conception. Nat Commun. 2025;16:296.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mora-Sánchez A, Aguilar-Salvador DI, Nowak I. Towards a gamete matching platform: using immunogenetics and artificial intelligence to predict recurrent miscarriage. Npj Digit Med. 2019;2:1–6.

    Article  Google Scholar 

  10. Tsai VF, Zhuang B, Pong YH, Hsieh JT, Chang HC. Web- and artificial intelligence–based image recognition for sperm motility analysis: verification study. JMIR Med Inform. 2020;8:e20031.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chung PH, Han TM, Rudnik B, Das AK. Peyronie’s disease: what do we know and how do we treat it? Can J Urol. 2020;27:11–9.

    PubMed  Google Scholar 

  12. Muneer A. Hypogonadism: an underdiagnosed condition. Trends Urol Gynaecol Sex Health. 2010;15:14–7.

    Article  Google Scholar 

  13. Baldwin K, Ginsberg P, Harkaway RC. Under-reporting of erectile dysfunction among men with unrelated urologic conditions. Int J Impot Res. 2003;15:87–9.

    Article  PubMed  Google Scholar 

  14. Liang Y, Huang J, Zhao Q, Mo H, Su Z, Feng S, et al. Global, regional, and national prevalence and trends of infertility among individuals of reproductive age (15–49 years) from 1990–2021, with projections to 2040. Hum Reprod Oxf Engl. 2025;40:529–44.

    Article  Google Scholar 

  15. Leung AK, Henry MA, Mehta A. Gaps in male infertility health services research. Transl Androl Urol. 2018;7:S303–9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Eisenberg ML, Esteves SC, Lamb DJ, Hotaling JM, Giwercman A, Hwang K, et al. Male infertility. Nat Rev Dis Primer. 2023;9:49.

    Article  Google Scholar 

  17. Olisa NP, Campo-Engelstein L, Martins Da Silva S. Male infertility: what on earth is going on? Pilot international questionnaire study regarding clinical evaluation and fertility treatment for men. Reprod Fertil. 2022;3:207–15.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Carlsen E, Giwercman A, Keiding N, Skakkebaek NE. Evidence for decreasing quality of semen during past 50 years. BMJ. 1992;305:609–13.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Levine H, Jørgensen N, Martino-Andrade A, Mendiola J, Weksler-Derri D, Jolles M, et al. Temporal trends in sperm count: a systematic review and meta-regression analysis of samples collected globally in the 20th and 21st centuries. Hum Reprod Update. 2023;29:157–76.

    Article  PubMed  Google Scholar 

  20. Sengupta P, Dutta S, Krajewska-Kulak E. The disappearing sperms: analysis of reports published between 1980 and 2015. Am J Mens Health. 2017;11:1279–304.

    Article  PubMed  Google Scholar 

  21. CDC. National ART summary. 2024 [cited 2024 Dec 17]. Available from: https://www.cdc.gov/art/reports/2021/summary.html.

  22. Gatimel N, Moreau J, Parinaud J, Léandri RD. Sperm morphology: assessment, pathophysiology, clinical relevance, and state of the art in 2017. Andrology. 2017;5:845–62.

    Article  PubMed  Google Scholar 

  23. Bijar A, Benavent AP, Mikaeili M, Khayati R. Fully automatic identification and discrimination of sperm’s parts in microscopic images of stained human semen smear. J Biomed Sci Eng. 2012;05:384–95.

    Article  Google Scholar 

  24. Bartoov B, Berkovitz A, Eltes F, Kogosowski A, Menezo Y, Barak Y. Real‐time fine morphology of motile human sperm cells is associated with IVF‐ICSI outcome. J Androl. 2002;23:1–8.

    Article  PubMed  Google Scholar 

  25. Björndahl L, Kirkman Brown J. The sixth edition of the WHO laboratory manual for the examination and processing of human semen: ensuring quality and standardization in basic examination of human ejaculates. Fertil Steril. 2022;117:246–51.

    Article  PubMed  Google Scholar 

  26. Czubaszek M, Andraszek K, Banaszewska D, Walczak-Jędrzejowska R. The effect of the staining technique on morphological and morphometric parameters of boar sperm. PLOS ONE. 2019;14:e0214243.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Butola A, Popova D, Prasad DK, Ahmad A, Habib A, Tinguely JC, et al. High spatially sensitive quantitative phase imaging assisted with deep neural network for classification of human spermatozoa under stressed condition. Sci Rep. 2020;10:13118.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sahoo AJ, Kumar Y. Seminal quality prediction using data mining methods. Technol Health Care. 2014;22:531–45.

    Article  PubMed  Google Scholar 

  29. Ilhan HO, Serbes G, Aydin N. Automated sperm morphology analysis approach using a directional masking technique. Comput Biol Med. 2020;122:103845.

    Article  PubMed  Google Scholar 

  30. Finelli R, Leisegang K, Tumallapalli S, Henkel R, Agarwal A. The validity and reliability of computer-aided semen analyzers in performing semen analysis: a systematic review. Transl Androl Urol. 2021;10:3069–79.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yibre AM, Koçer B. Semen quality predictive model using feed forwarded neural network trained by learning-based artificial algae algorithm. Eng Sci Technol Int J. 2021;24:310–8.

    Google Scholar 

  32. Parrella A, Rubio Riquelme N, Van Os Galdos LA, Vilella Amorós I, Jiménez Gadea M, Aizpurua J. P-110 a novel artificial intelligence microscopy: mojo AISA, the new way to perform semen analysis. Hum Reprod. 2022;37:deac107.106.

    Article  Google Scholar 

  33. Salih M, Austin C, Warty RR, Tiktin C, Rolnik DL, Momeni M, et al. Embryo selection through artificial intelligence versus embryologists: a systematic review. Hum Reprod Open. 2023;2023:hoad031.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Berntsen J, Rimestad J, Lassen JT, Tran D, Kragh MF. Robust and generalizable embryo selection based on artificial intelligence and time-lapse image sequences. PloS ONE. 2022;17:e0262661.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Borna MR, Sepehri MM, Maleki B. An artificial intelligence algorithm to select most viable embryos considering current process in IVF labs. Front Artif Intell. 2024;7:1375474.

    Article  PubMed  PubMed Central  Google Scholar 

  36. GhoshRoy D, Alvi PA, Santosh KC. Explainable AI to predict male fertility using extreme gradient boosting algorithm with SMOTE. Electronics. 2023;12:15.

    Article  Google Scholar 

  37. Javadi S, Mirroshandel SA. A novel deep learning method for automatic assessment of human sperm images. Comput Biol Med. 2019;109:182–94.

    Article  PubMed  Google Scholar 

  38. Yüzkat M, Ilhan HO, Aydin N. Multi-model CNN fusion for sperm morphology analysis. Comput Biol Med. 2021;137:104790.

    Article  PubMed  Google Scholar 

  39. Agarwal A, Baskaran S, Parekh N, Cho CL, Henkel R, Vij S, et al. Male infertility. Lancet Lond Engl. 2021;397:319–33.

    Article  Google Scholar 

  40. AlZoubi O, Abu Awad M, Abdalla AM, Samrraie L. Varicocele detection in ultrasound images using deep learning. Multimed Tools Appl. 2024;83:63617–34.

    Article  Google Scholar 

  41. Kayra MV, Şahin A, Toksöz S, Serindere M, Altıntaş E, Özer H, et al. Machine learning-based classification of varicocoele grading: a promising approach for diagnosis and treatment optimization. Andrology. 2024. https://doi.org/10.1111/andr.13776.

  42. Ory J, Tradewell MB, Blankstein U, Lima TF, Nackeeran S, Gonzalez DC, et al. Artificial intelligence based machine learning models predict sperm parameter upgrading after varicocele repair: a multi-institutional analysis. World J Mens Health. 2022;40:618–26.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Crafa A, Russo M, Cannarella R, Gül M, Compagnone M, Mongioì LM, et al. Predictability of varicocele repair success: preliminary results of a machine learning-based approach. Asian J Androl. 2024;27:52–8.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pellegrino F, Sjoberg DD, Tin AL, Benfante NE, Briganti A, Montorsi F, et al. Relationship between age, comorbidity, and the prevalence of erectile dysfunction. Eur Urol Focus. 2022;9:162.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lin H, Zhao L, Wu H, Cao M, Jiang H. Sexual life and medication taking behaviours in young men: an online survey of 92 620 respondents in China. Int J Clin Pract. 2020;74:e13417.

    Article  PubMed  Google Scholar 

  46. Şahin MF, Ateş H, Keleş A, Özcan R, Doğan Ç, Akgül M, et al. Responses of five different artificial intelligence chatbots to the top searched queries about erectile dysfunction: a comparative analysis. J Med Syst. 2024;48:38.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Baturu M, Solakhan M, Kazaz TG, Bayrak O. Frequently asked questions on erectile dysfunction: evaluating artificial intelligence answers with expert mentorship. Int J Impot Res. 2025;37:310–4.

    Article  PubMed  Google Scholar 

  48. Chen XY, Lu WT, Zhang D, Tan MY, Qin X. Development and validation of a prediction model for ED using machine learning: according to NHANES 2001–2004. Sci Rep. 2024;14:27279.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Glavaš S, Valenčić L, Trbojević N, Tomašić AM, Turčić N, Tibauth S, et al. Erectile function in cardiovascular patients: its significance and a quick assessment using a visual-scale questionnaire. Acta Cardiol. 2015;70:712–9.

    Article  PubMed  Google Scholar 

  50. Chen YF, Lin CS, Hong CF, Lee DJ, Sun C, Lin HH. Design of a clinical decision support system for predicting erectile dysfunction in men using NHIRD dataset. IEEE J Biomed Health Inform. 2019;23:2127–37.

    Article  PubMed  Google Scholar 

  51. Oh JH, Kerns S, Ostrer H, Powell SN, Rosenstein B, Deasy JO. Computational methods using genome-wide association studies to predict radiotherapy complications and to identify correlative molecular processes. Sci Rep. 2017;7:43381.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hasannejadasl H, Roumen C, Poel van der H, Vanneste B, Roermund van J, Aben K, et al. Development and external validation of multivariate prediction models for erectile dysfunction in men with localized prostate cancer. PLOS ONE. 2023;18:e0276815.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Agochukwu-Mmonu N, Murali A, Wittmann D, Denton B, Dunn RL, Montie J, et al. Development and validation of dynamic multivariate prediction models of sexual function recovery in patients with prostate cancer undergoing radical prostatectomy: results from the MUSIC statewide collaborative. Eur Urol Open Sci. 2022;40:1.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Saikali S, Reddy S, Gokaraju M, Goldsztein N, Dyer A, Gamal A, et al. Development and assessment of an AI-based machine learning model for predicting urinary continence and erectile function recovery after robotic-assisted radical prostatectomy: insights from a prostate cancer referral center. Comput Methods Programs Biomed. 2025;259:108522.

    Article  PubMed  Google Scholar 

  55. Rew KT, Heidelbaugh JJ. Erectile dysfunction. Am Fam Physician. 2016;94:820–7.

    PubMed  Google Scholar 

  56. Gorek M, Stief CG, Hartung C, Jonas U. Computer-assisted interpretation of electromyograms of corpora cavernosa using fuzzy logic. World J Urol. 1997;15:65–70.

    Article  PubMed  Google Scholar 

  57. Kellner B, Stief CG, Hinrichs H, Hartung C. Computerized classification of corpus cavernosum electromyogram signals by the use of discriminant analysis and artificial neural networks to support diagnosis of erectile dysfunction. Urol Res. 2000;28:6–13.

    Article  PubMed  Google Scholar 

  58. Kim YH. Artificial intelligence in medical ultrasonography: driving on an unpaved road. Ultrasonography. 2021;40:313.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Li L, Fan W, Li J, Li Q, Wang J, Fan Y, et al. Abnormal brain structure as a potential biomarker for venous erectile dysfunction: evidence from multimodal MRI and machine learning. Eur Radiol. 2018;28:3789–800.

    Article  PubMed  Google Scholar 

  60. Smerina DR, Pearlman AM. The intersection of artificial intelligence, wearable devices, and sexual medicine. Curr Urol Rep. 2024;26:14.

    Article  PubMed  Google Scholar 

  61. Ogrinc FG, Linet OI. Evaluation of real-time RigiScan monitoring in pharmacological erection. J Urol. 1995;154:1356–9.

    Article  PubMed  Google Scholar 

  62. Heo Y, Kim J, Cha C, Shin K, Roh J, Jo J. Wearable E-textile and CNT sensor wireless measurement system for real-time penile erection monitoring. Sensors. 2021;22:231.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Konstantinidis DRCV, Alexandrou S, Alexandrou M, Raheem AA. Adam sensor: a novel nocturnal penile tumescence wearable device - technology overview & applications. J Sex Med. 2022;19:S133–4.

    Article  Google Scholar 

  64. Sng CMN, Wee LMC, Tang KC, Lee KCJ, Wu QH, Yeo JC, et al. Wearable soft microtube sensors for quantitative home-based erectile dysfunction monitoring. Sensors. 2022;22:9344.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Saffati G, Orozco Rendon D, Daily R, Khera M, Justin E. (039) Erection duration and firmness: a descriptive analysis from a population-based study. J Sex Med. 2024;21:qdae161.032.

    Article  Google Scholar 

  66. Lange M, Charles D, Kazeem A, Jones M, Sun F, Ghosal S, et al. Is low-intensity shockwave therapy for erectile dysfunction a durable treatment option?-long-term outcomes of a randomized sham-controlled trial. Transl Androl Urol. 2024;13:2194–200.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lee M, Sharifi R. Non-invasive management options for erectile dysfunction when a phosphodiesterase type 5 inhibitor fails. Drugs Aging. 2018;35:175–87.

    Article  PubMed  Google Scholar 

  68. Jang I, Lee JU, Lee JM, Kim BH, Moon B, Hong J, et al. LC–MS/MS software for screening unknown erectile dysfunction drugs and analogues: artificial neural network classification, peak-count scoring, simple similarity search, and hybrid similarity search algorithms. Anal Chem. 2019;91:9119–28.

    Article  PubMed  Google Scholar 

  69. Yang R, Liu C, Li Q, Wang W, Wu B, Chen A, et al. Artificial intelligence based identification of the functional role of hirudin in diabetic erectile dysfunction treatment. Pharmacol Res. 2021;163:105244.

    Article  PubMed  Google Scholar 

  70. Furtado TP, Osadchiy V, Eleswarapu SV. The promise of artificial intelligence in Peyronie’s disease. Curr Urol Rep. 2025;26:3.

    Article  Google Scholar 

  71. Al-Thakafi S, Al-Hathal N. Peyronie’s disease: a literature review on epidemiology, genetics, pathophysiology, diagnosis and work-up. Transl Androl Urol. 2016;5:280–9.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Levine LA. Advancements and challenges in Peyronie’s disease: a personal journey and current perspectives. Int J Impot Res. 2024;36:105–6.

    Article  PubMed  Google Scholar 

  73. Baray SB, Abdelmoniem M, Mahmud S, Kabir S, Faisal MAA, Chowdhury MEH, et al. Automated measurement of penile curvature using deep learning-based novel quantification method. Front Pediatr. 2023;11:1149318.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Abbas TO, AbdelMoniem M, Chowdhury MEH. Automated quantification of penile curvature using artificial intelligence. Front Artif Intell. 2022;5:954497.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Walker DT, Jiang T, Santamaria A, Osadchiy V, Daniels D, Sturm RM, et al. 3D-printed phantoms to quantify accuracy and variability of goniometric and volumetric assessment of Peyronie’s disease deformities. Int J Impot Res. 2022;34:786–9.

    Article  PubMed  Google Scholar 

  76. Siapno AED, Yi BC, Daniels D, Bolagani A, Kwan L, Walker D, et al. Measurement accuracy of 3-Dimensional mapping technologies versus standard goniometry for angle assessment. J Pediatr Urol. 2020;16:547–54.

    Article  PubMed  Google Scholar 

  77. Tostain JL, Blanc F. Testosterone deficiency: a common, unrecognized syndrome. Nat Clin Pract Urol. 2008;5:388–96.

    Article  PubMed  Google Scholar 

  78. David J, Charles A. Barriers to diagnosis and accessing effective treatment and support for testosterone deficiency. J Mens Health. 2024;20:62–71.

    Google Scholar 

  79. Hartman-Kenzler J, Torres J, Alami-Harandi A, Miller C, Park J, Berg W. MP47-13 CHATGPT explains testosterone therapy: accurate answers with questionable references. J Urol. 2024;211:e768.

    Article  Google Scholar 

  80. Pabla H, Lange A, Nadiminty N, Sindhwani P. Responses of artificial intelligence chatbots to testosterone replacement therapy: patients beware! Société Int D’Urologie J. 2025;6:13.

    Article  Google Scholar 

  81. Kim JW, Moon DG. Optimizing aging male symptom questionnaire through genetic algorithms based machine learning techniques. World J Mens Health. 2020;39:139.

    Article  PubMed  PubMed Central  Google Scholar 

  82. American Urological Association. Testosterone deficiency guideline. 2024 [cited 2025 Jan 21]. Available from: https://www.auanet.org/guidelines-and-quality/guidelines/testosterone-deficiency-guideline.

  83. Lu T, Hu YH, Tsai CF, Liu SP, Chen PL. Applying machine learning techniques to the identification of late-onset hypogonadism in elderly men. SpringerPlus. 2016;5:729.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Novaes MT, Ferreira de Carvalho OL, Guimarães Ferreira PH, Nunes Tiraboschi TL, Silva CS, Zambrano JC, et al. Prediction of secondary testosterone deficiency using machine learning: a comparative analysis of ensemble and base classifiers, probability calibration, and sampling strategies in a slightly imbalanced dataset. Inform Med Unlocked. 2021;23:100538.

    Article  Google Scholar 

  85. Şahin MF, Keleş A, Özcan R, Doğan Ç, Topkaç EC, Akgül M, et al. Evaluation of information accuracy and clarity: chatGPT responses to the most frequently asked questions about premature ejaculation. Sex Med. 2024;12:qfae036.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Athanasiadis L. Premature ejaculation: is it a biogenic or a psychogenic disorder? J Sex Marital Ther. 1998;13:241–55.

    Article  Google Scholar 

  87. Anıl H, Kayra MV. The digital dialogue on premature ejaculation: evaluating the efficacy of artificial intelligence-driven responses. Int Urol Nephrol. 2025. https://doi.org/10.1007/s11255-025-04461-x.

  88. Carlson JA, Cheng RZ, Lange A, Nagalakshmi N, Rabets J, Shah T, et al. Accuracy and readability of artificial intelligence chatbot responses to vasectomy-related questions: public beware. Cureus. 2024;16:e67996.

    PubMed  PubMed Central  Google Scholar 

  89. Chung D, Sidhom K, Dhillon H, Bal DS, Fidel MG, Jawanda G, et al. Real-world utility of chatGPT in pre-vasectomy counselling, a safe and efficient practice: a prospective single-centre clinical study. World J Urol. 2024;43:32.

    Article  PubMed  Google Scholar 

  90. Esmaeilzadeh P. Challenges and strategies for wide-scale artificial intelligence (AI) deployment in healthcare practices: a perspective for healthcare organizations. Artif Intell Med. 2024;151:102861.

    Article  PubMed  Google Scholar 

  91. Alowais SA, Alghamdi SS, Alsuhebany N, Alqahtani T, Alshaya AI, Almohareb SN, et al. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Med Educ. 2023;23:689.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Maleki Varnosfaderani S, Forouzanfar M. The role of AI in hospitals and clinics: transforming healthcare in the 21st century. Bioengineering. 2024;11:337.

    Article  PubMed  PubMed Central  Google Scholar 

  93. American Urological Association. Guidelines & quality. 2025 [cited 2025 Jan 4]. Available from: https://www.auanet.org/guidelines-and-quality.

  94. Rodler S. Artificial intelligence importance of guidelines to ensure transparency and reproducibility of artificial intelligence interventions - American urological association. 2024 [cited 2024 Nov 18]. Available from: https://auanews.net/issues/articles/2024/february-extra-2024/artificial-intelligence-importance-of-guidelines-to-ensure-transparency-and-reproducibility-of-artificial-intelligence-interventions.

  95. American Medical Association. AMA: physicians enthusiastic but cautious about health care AI. 2023 [cited 2024 Nov 3]. Available from: https://www.ama-assn.org/press-center/press-releases/ama-physicians-enthusiastic-cautious-about-health-care-ai.

  96. Laitinen A, Sahlgren O. AI systems and respect for human autonomy. Front Artif Intell. 2021;4:705164.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Murdoch B. Privacy and artificial intelligence: challenges for protecting health information in a new era. BMC Med Ethics. 2021;22:122.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Mittermaier M, Raza MM, Kvedar JC. Bias in AI-based models for medical applications: challenges and mitigation strategies. Npj Digit Med. 2023;6:1–3.

    Article  Google Scholar 

  99. Dankwa-Mullan I. Health equity and ethical considerations in using artificial intelligence in public health and medicine. Prev Chronic Dis. 2024;21:E64.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ali S, Abuhmed T, El-Sappagh S, Muhammad K, Alonso-Moral JM, Confalonieri R, et al. Explainable artificial intelligence (XAI): what we know and what is left to attain trustworthy artificial intelligence. Inf Fusion. 2023;99:101805.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Haley Clark Writing- Original draft preparation, Data curation, Writing- Review & Editing. Nikit Venishetty: Investigation, Writing- Review & Editing Skyler Howell: Writing- Review & Editing. Nick Deebel: Review & Editing Mounasamy Software, Validation, Formal Analysis, Methodology. Akhil Muthigi: Conceptualization, Methodology, Writing- Review & Editing.

Corresponding author

Correspondence to Haley Clark.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

The authors certify that this document complies with the current ethical standards.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clark, H., Venishetty, N., Howell, S. et al. Utilization of artificial intelligence in Men’s Health: Opportunities for innovation and quality improvement. Int J Impot Res (2025). https://doi.org/10.1038/s41443-025-01112-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41443-025-01112-8

Search

Quick links