Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature Communications
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. nature communications
  3. articles
  4. article
Accelerating hybrid XOR–CNF Boolean satisfiability problems natively with in-memory computing
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 19 February 2026

Accelerating hybrid XOR–CNF Boolean satisfiability problems natively with in-memory computing

  • Haesol Im  ORCID: orcid.org/0000-0002-2625-92001 na1,
  • Fabian Böhm  ORCID: orcid.org/0000-0001-8516-97852 na1,
  • Giacomo Pedretti  ORCID: orcid.org/0000-0002-4501-86723,
  • Noriyuki Kushida1,
  • Moslem Noori  ORCID: orcid.org/0000-0002-7524-42401,
  • Elisabetta Valiante  ORCID: orcid.org/0000-0003-3820-78511,
  • Xiangyi Zhang1,
  • Chan-Woo Yang  ORCID: orcid.org/0009-0003-0556-89811,
  • Tinish Bhattacharya  ORCID: orcid.org/0000-0003-4591-62774,
  • Xia Sheng3,
  • Jim Ignowski  ORCID: orcid.org/0000-0001-5091-36743,
  • Arne Heittmann5,
  • John Paul Strachan  ORCID: orcid.org/0000-0002-1382-36775,6,
  • Masoud Mohseni3,
  • Raymond Beausoleil3,
  • Thomas Van Vaerenbergh  ORCID: orcid.org/0000-0002-7301-86102 &
  • …
  • Ignacio Rozada  ORCID: orcid.org/0000-0002-4878-18681 

Nature Communications , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Computational science
  • Electrical and electronic engineering

Abstract

The Boolean satisfiability (SAT) problem is a computationally challenging decision problem central to many industrial applications. For SAT problems in cryptanalysis, circuit design, and telecommunication, solutions can often be found more efficiently by representing them with a combination of exclusive OR (XOR) and conjunctive normal form (CNF) clauses. We propose a hardware accelerator architecture that natively embeds and solves such hybrid XOR–CNF problems using in-memory computing hardware. To achieve this, we introduce an algorithm and demonstrate, both experimentally and through simulations, how it can be efficiently implemented with memristor crossbar arrays. Compared to the conventional approaches that translate XOR–CNF problems to pure CNF problems, our simulations show that the accelerator improves computation speed, energy efficiency, and chip area utilization of in-memory accelerators by  ~ 10 × for a set of hard cryptographic benchmarking problems. Moreover, the accelerator achieves a  ~ 10 × speedup and a  ~ 1000 × gain in energy efficiency over state-of-the-art SAT solvers running on CPUs.

Similar content being viewed by others

Memristor-based hardware accelerators for artificial intelligence

Article 23 April 2024

Efficient combinatorial optimization by quantum-inspired parallel annealing in analogue memristor crossbar

Article Open access 22 September 2023

CMOS-compatible electrochemical synaptic transistor arrays for deep learning accelerators

Article 27 March 2023

Data availability

The benchmarking instances used in this study are available in ref. 57.

Code availability

The simulator used for the heuristic simulation and energy modeling is open-sourced and available at https://github.com/HewlettPackard/CountryCrab.

References

  1. Cook, S. A. The complexity of theorem proving procedures. In Proceedings of the Third Annual ACM Symposium, 151–158 (ACM, 1971).

  2. Levin, L. A. Universal sequential search problems. Probl. Peredachi Inf. 9, 115–116 (1973).

    Google Scholar 

  3. Larrabee, T. Test pattern generation using boolean satisfiability. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 11, 4–15 (1992).

    Google Scholar 

  4. Knuth, D. E. The Art of Computer Programming, Volume 4, Fascicle 6: Satisfiability (Addison-Wesley Professional, 2015).

  5. Perron, L. & Didier, F. CP-SAT. https://developers.google.com/optimization/cp/cp_solver (2024).

  6. Kowalsky, M., Albash, T., Hen, I. & Lidar, D. A. 3-regular three-xorsat planted solutions benchmark of classical and quantum heuristic optimizers. Quantum Sci. Technol. 7, 025008 (2022).

    Google Scholar 

  7. Nikhar, S., Kannan, S., Aadit, N. A., Chowdhury, S. & Camsari, K. Y. All-to-all reconfigurability with sparse and higher-order ising machines. Nat. Commun. 15, 8977 (2024).

    Google Scholar 

  8. Pedretti, G. et al. Solving boolean satisfiability problems with resistive content addressable memories. npj Unconv. Comput. 2, 7 (2025).

    Google Scholar 

  9. Sharma, A., Burns, M., Hahn, A. & Huang, M. Augmenting an electronic ising machine to effectively solve boolean satisfiability. Sci. Rep. 13, 22858 (2023).

    Google Scholar 

  10. Zhang, Q. et al. A stochastic analog sat solver in 65nm CMOS achieving 6.6μs average solution time with 100% solvability for hard 3-sat problems. In 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) (IEEE, 2024).

  11. Shim, C., Bae, J. & Kim, B. 30.3 VIP-Sat: a Boolean satisfiability solver featuring 5 × 12 variable in-memory processing elements with 98% solvability for 50-variables 218-clauses 3-SAT problems. In 2024 IEEE International Solid-State Circuits Conference (ISSCC), 486–488 (IEEE, 2024).

  12. Xie, S. et al. 29.2 Snap-SAT: a one-shot energy-performance-aware all-digital compute-in-memory solver for large-scale hard boolean satisfiability problems. In 2023 IEEE International Solid- State Circuits Conference (ISSCC), 420–422 (IEEE, 2023).

  13. Kim, D., Rahman, N. M. & Mukhopadhyay, S. PRESTO: a processing-in-memory-based k -SAT solver using recurrent stochastic neural network with unsupervised learning. IEEE J. Solid State Circuits 59, 2310–2320 (2024).

    Google Scholar 

  14. Bhattacharya, T. et al. A fully integrated mixed-signal compute-in-memory accelerator for solving arbitrary order boolean satisfiability problems. In 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) (IEEE, 2025).

  15. Soos, M., Gocht, S. & Meel, K. S. Tinted, detached, and lazy cnf-xor solving and its applications to counting and sampling. In International Conference on Computer Aided Verification, 463–484 (Springer, 2020).

  16. Nawrocki, W., Liu, Z., Fröhlich, A., Heule, M. J. H. & Biere, A. Xor local search for boolean brent equations. In SAT, vol. 12831 of Lecture Notes in Computer Science, (eds, Li, C.-M. & Manyá, F.) 417–435 (Springer, 2021).

  17. Andraschko, B., Danner, J. & Kreuzer, M. Sat solving using xor-or-and normal forms. Math. Comput. Sci. 18, 1–26 (2024).

    Google Scholar 

  18. Nandi, A., Chakrabartty, S. & Thakur, C. S. Margin propagation based xor-sat solvers for decoding of ldpc codes. In IEEE Transactions on Communications (IEEE, 2024).

  19. Bellini, E. et al. New records of pre-image search of reduced sha-1 using sat solvers. In Proceedings of the Seventh International Conference on Mathematics and Computing: ICMC 2021, 141–151 (Springer, 2022).

  20. Tseitin, G. S. On the Complexity of Derivation in Propositional Calculus, 466–483 (Springer Berlin Heidelberg, 1983).

  21. Nawrocki, W., Liu, Z., Fröhlich, A., Heule, M. J. & Biere, A. XOR local search for boolean brent equations. In Theory and Applications of Satisfiability Testing–SAT 2021: 24th International Conference, Barcelona, Spain, July 5-9, 2021, Proceedings 24, 417–435 (Springer, 2021).

  22. Soos, M., Nohl, K. & Castelluccia, C. Extending SAT solvers to cryptographic problems. In Theory and Applications of Satisfiability Testing - SAT 2009, 12th International Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceedings, vol. 5584 of Lecture Notes in Computer Science (ed. Kullmann, O.) 244–257 (Springer, 2009).

  23. Sebastian, A., Le Gallo, M., Riduan, K.-A. & Evangelos, E. Memroy devices and applications for in-memory computing. Nat. Nanotechnol. 15, 529–544 (2020).

    Google Scholar 

  24. Zhu, C., Rucker, A. C., Wang, Y. & Dally, W. J. SatIn: Hardware for boolean satisfiability inference. Preprint at https://arxiv.org/abs/2303.02588 (2023).

  25. Canteaut, A. & Chabaud, F. A new algorithm for finding minimum-weight words in a linear code: application to mceliece’s cryptosystem and to narrow-sense bch codes of length 511. IEEE Trans. Inf. Theory 44, 367–378 (1998).

    Google Scholar 

  26. Mandrà, S., Munoz-Bauza, H., Mossi, G. & Rieffel, E. G. Generating hard ising instances with planted solutions using post-quantum cryptographic protocols. Fut. Gener. Comput. Syst. 166, 107721 (2025).

  27. Daemen, J. & Rijmen, V. The Design of Rijndael : AES - The Advanced Encryption Standard, 1st edn. Information Security and Cryptography (Springer Berlin Heidelberg, 2002).

  28. Kamal, A. A. & Youssef, A. M. Applications of SAT solvers to AES key recovery from decayed key schedule images. In 2010 Fourth International Conference on Emerging Security Information, Systems and Technologies, 216–220 (IEEE, 2010).

  29. Biere, A. et al. CaDiCaL 2.0. In Gurfinkel, A. & Ganesh, V. (eds.) Computer Aided Verification - 36th International Conference, CAV 2024, Montreal, QC, Canada, July 24-27, 2024, Proceedings, Part I, vol. 14681 of Lecture Notes in Computer Science, 133–152 (Springer, 2024).

  30. Selman, B., Kautz, H. & Cohen, B. Noise strategies for improving local search. Proceedings of the National Conference on Artificial Intelligence, 1 (ACM, 1999).

  31. Russell, S. & Norvig, P. Artificial Intelligence: A Modern Approach, 3 edn (Prentice Hall, 2010).

  32. Aramon, M. et al. Physics-inspired optimization for quadratic unconstrained problems using a digital annealer. Front. Phys. 7, 48 (2019).

    Google Scholar 

  33. Bhattacharya, T., Hutchinson, G. H., Pedretti, G. & Strukov, D. Ho-fpia: High-order field-programmable ising arrays with in-memory computing. In 2024 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 252–259 (IEEE, 2024).

  34. Bhattacharya, T. et al. Computing high-degree polynomial gradients in memory. Nat. Commun. 15, 8211 (2024).

    Google Scholar 

  35. Heittmann, A., Hizzani, M. & Strachan, J. P. Impact of variability compensation on the performance of an rram-based 3-sat solver. In 2025 IEEE International Symposium on Circuits and Systems (ISCAS), 1–5 (IEEE, 2025).

  36. Li, C. et al. Cmos-integrated nanoscale memristive crossbars for cnn and optimization acceleration. In 2020 IEEE International Memory Workshop (IMW), 1–4 (IEEE, 2020).

  37. Sheng, X. et al. Low-conductance and multilevel cmos-integrated nanoscale oxide memristors. Adv. Electron. Mater. 5, 1800876 (2019).

    Google Scholar 

  38. Crawford, J. M., Kearns, M. J. & Schapire, R. E. The minimal disagreement parity problem as a hard satisfiability problem. In Computational Intell (Research Lab and AT&T Bell Labs TR, 1994).

  39. Pedretti, G., Ambrosi, E. & Ielmini, D. Conductance variations and their impact on the precision of in-memory computing with resistive switching memory (rram). In 2021 IEEE International Reliability Physics Symposium (IRPS), 1–8 (IEEE, 2021).

  40. Rao, M. et al. Thousands of conductance levels in memristors integrated on cmos. Nature 615, 823–829 (2023).

    Google Scholar 

  41. Biere, A. arminbiere/kissat: Release 4.0.0. https://github.com/arminbiere/kissat (2024).

  42. Stern, J. A New Identification Scheme Based on Syndrome Decoding, 13–21 (Springer Berlin Heidelberg, 1994).

  43. Dobrynin, D. et al. Energy landscapes of combinatorial optimization in Ising machines. Phys. Rev. E 110, 045308 (2024).

    Google Scholar 

  44. Cai, F. et al. Power-efficient combinatorial optimization using intrinsic noise in memristor Hopfield neural networks. Nat. Electron. 3, 409–418 (2020).

    Google Scholar 

  45. Ambrogio, S. et al. An analog-ai chip for energy-efficient speech recognition and transcription. Nature 620, 768–775 (2023).

  46. Soos, M. & Meel, K. S. Gaussian Elimination Meets Maximum Satisfiability. In Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning (IJCAI Organization, 2025).

  47. Zhang, X. et al. Parallel tempering–inspired distributed binary optimization with in-memory computing. Phys. Rev. 23, 034031 (2025).

  48. Soos, M., Devriendt, J., Gocht, S., Shaw, A. & Meel, K. S. Cryptominisat with CCAnr at the sat competition 2020. SAT COMPETITION 2020, 27 (2020).

    Google Scholar 

  49. Soos, M., Selman, B., Kautz, H., Devriendt, J. & Gocht, S. Cryptominisat with walksat at the sat competition 2020. SAT COMPETITION 2020, 29 (2020).

  50. Lo, M., Chang, M.-C. F. & Cong, J. SAT-Accel: A modern sat solver on a FPGA. In Proceedings of the 2025 ACM/SIGDA International Symposium on Field Programmable Gate Arrays, FPGA ’25, 234–246 (Association for Computing Machinery, 2025).

  51. Bernstein, D. J., Lange, T. & Peters, C. Attacking and defending the mceliece cryptosystem. In Post-Quantum Cryptography (eds Buchmann, J. & Ding, J.) 31–46 (Springer Berlin Heidelberg, 2008).

  52. McEliece, R. J. A public-key cryptosystem based on algebraic coding theory. Deep Space Netw. Prog. Rep. 44, 114–116 (1978).

    Google Scholar 

  53. Niederreiter, H. Knapsack-type cryptosystems and algebraic coding theory. Prob. Contr. Inform. Theory 15, 157–166 (1986).

    Google Scholar 

  54. National Institute of Standards and Technology. Post-quantum cryptography candidates to be standardized and round 4 of the nist post-quantum cryptography standardization process. https://csrc.nist.gov/news/2022/pqc-candidates-to-be-standardized-and-round-4 (2022).

  55. Patterson, N. The algebraic decoding of goppa codes. IEEE Trans. Inf. Theory 21, 203–207 (1975).

    Google Scholar 

  56. Mandra, S. et al. PySA: fast simulated annealing in native Python. https://github.com/nasa/pysa (2023).

  57. Im, H. et al. Dataset for accelerating hybrid xor-cnf sat problems natively with in-memory computing. Zenodo data repository, https://doi.org/10.5281/zenodo.18235974 (2026).

  58. Chen, J. XORSAT: an efficient algorithm for the dimacs 32-bit parity problem. Preprint at https://arxiv.org/abs/cs/0703006 (2007).

  59. Dimacs instance repository. http://archive.dimacs.rutgers.edu/pub/challenge/sat/benchmarks/cnf/ (2000).

  60. M.P., B. & Babu, K. R. Secure cloud storage using aes encryption. In 2016 International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT), 859–864 (IEEE, 2016).

  61. Balint, A. et al. (eds.) Proceedings of SAT Challenge 2012 : Solver and Benchmark Descriptions (University of Helsinki, 2012). https://api.semanticscholar.org/CorpusID:199587264.

  62. Ignatiev, A., Morgado, A. & Marques-Silva, J. PySAT: a Python toolkit for prototyping with SAT oracles. In Theory and Applications of Satisfiability Testing – SAT, 428–437 (SAT, 2018).

  63. Noori, M., Valiante, E., Vaerenbergh, T. V., Mohseni, M. & Rozada, I. Statistical analysis for per-instance evaluation of stochastic optimizers: Avoiding unreliable conclusions. Phys. Rev. Appl. https://link.aps.org/doi/10.1103/2fpj-t663 (2026).

  64. van de Ven, A. et al. Powertop. https://github.com/fenrus75/powertop. Version 2.15 (2022).

  65. Murmann, B. ADC Performance Survey 1997-2024. Available: https://github.com/bmurmann/ADC-survey (2025).

  66. Andrulis, T., Chen, R. Lee, H.-S. Emer, J. S. & Sze, V. Modeling Analog-Digital-Converter Energy and Area for Compute-In-Memory Accelerator Design. arXiv https://arxiv.org/abs/2404.06553 (2024).

  67. Shafiee, A. et al. ISAAC: a convolutional neural network accelerator with in-situ analog arithmetic in crossbars. ACM SIGARCH Comput. Architecture N. 44, 14–26 (2016).

    Google Scholar 

Download references

Acknowledgements

The authors thank our editor, Marko Bucyk, for his careful review and editing of the manuscript, and Dmitri Strukov for discussions on XOR hardware architectures. This material is based upon work supported by the Defense Advanced Research Projects Agency (DARPA) through Air Force Research Laboratory Agreement No. FA8650-23-3-7313. The views, opinions, and/or findings expressed are those of the author(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Author information

Author notes
  1. These authors contributed equally: Haesol Im, Fabian Böhm.

Authors and Affiliations

  1. 1QB Information Technologies (1QBit), Vancouver, BC, Canada

    Haesol Im, Noriyuki Kushida, Moslem Noori, Elisabetta Valiante, Xiangyi Zhang, Chan-Woo Yang & Ignacio Rozada

  2. HPE Labs, Hewlett Packard Enterprise, Brussels, Belgium

    Fabian Böhm & Thomas Van Vaerenbergh

  3. HPE Labs, Hewlett Packard Enterprise, Milpitas, CA, USA

    Giacomo Pedretti, Xia Sheng, Jim Ignowski, Masoud Mohseni & Raymond Beausoleil

  4. University of California, Santa Barbara, CA, USA

    Tinish Bhattacharya

  5. Peter Grünberg Institute (PGI-14), Forschungszentrum Jülich GmbH, Jülich, Germany

    Arne Heittmann & John Paul Strachan

  6. RWTH Aachen University, Aachen, Germany

    John Paul Strachan

Authors
  1. Haesol Im
    View author publications

    Search author on:PubMed Google Scholar

  2. Fabian Böhm
    View author publications

    Search author on:PubMed Google Scholar

  3. Giacomo Pedretti
    View author publications

    Search author on:PubMed Google Scholar

  4. Noriyuki Kushida
    View author publications

    Search author on:PubMed Google Scholar

  5. Moslem Noori
    View author publications

    Search author on:PubMed Google Scholar

  6. Elisabetta Valiante
    View author publications

    Search author on:PubMed Google Scholar

  7. Xiangyi Zhang
    View author publications

    Search author on:PubMed Google Scholar

  8. Chan-Woo Yang
    View author publications

    Search author on:PubMed Google Scholar

  9. Tinish Bhattacharya
    View author publications

    Search author on:PubMed Google Scholar

  10. Xia Sheng
    View author publications

    Search author on:PubMed Google Scholar

  11. Jim Ignowski
    View author publications

    Search author on:PubMed Google Scholar

  12. Arne Heittmann
    View author publications

    Search author on:PubMed Google Scholar

  13. John Paul Strachan
    View author publications

    Search author on:PubMed Google Scholar

  14. Masoud Mohseni
    View author publications

    Search author on:PubMed Google Scholar

  15. Raymond Beausoleil
    View author publications

    Search author on:PubMed Google Scholar

  16. Thomas Van Vaerenbergh
    View author publications

    Search author on:PubMed Google Scholar

  17. Ignacio Rozada
    View author publications

    Search author on:PubMed Google Scholar

Contributions

H.I. and F.B. contributed equally to this work and are recognized co-first authors. H.I. and F.B. wrote the manuscript. H.I., N.K., and T.B. performed algorithm designs. M.N. and E.V. analyzed the numeric results. H.I., X.Z., and C.-W.Y. conducted the corresponding numeric benchmarking simulation. A.H. performed circuit and architectural simulations. X.S., J.I., and J.P.S. contributed to the memristor fabrication and experimental system development. G.P. and T.V.V. conceived the idea of asserting XOR clauses with in-memory computing. F.B. derived the hardware architecture, conducted the hardware modeling and energy simulations, and performed the hardware experiments. I.R. conceived the main idea of the XOR–CNF use case. I.R., T.V.V., J.P.S., M.M., and R.B. supervised and led the collaboration effort. All authors analyzed and discussed the results.

Corresponding author

Correspondence to Ignacio Rozada.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Xueqing Li and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Im, H., Böhm, F., Pedretti, G. et al. Accelerating hybrid XOR–CNF Boolean satisfiability problems natively with in-memory computing. Nat Commun (2026). https://doi.org/10.1038/s41467-026-69465-2

Download citation

  • Received: 10 April 2025

  • Accepted: 02 February 2026

  • Published: 19 February 2026

  • DOI: https://doi.org/10.1038/s41467-026-69465-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Videos
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Editors
  • Journal Information
  • Open Access Fees and Funding
  • Calls for Papers
  • Editorial Values Statement
  • Journal Metrics
  • Editors' Highlights
  • Contact
  • Editorial policies
  • Top Articles

Publish with us

  • For authors
  • For Reviewers
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature Communications (Nat Commun)

ISSN 2041-1723 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics