Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plants repress ROS1 expression to attenuate heat-induced transposon burst

Abstract

The active DNA demethylase Repressor of Silencing 1 (ROS1) regulates genomic DNA methylation patterns during plant development. ROS1 expression is promoted by DNA methylation within its promoter region. However, the mechanisms and biological significance of ROS1 regulation under abiotic stresses remain elusive. Here we show that heat stress reduces DNA methylation in the ROS1 promoter to suppress its expression. Under normal conditions, SUVH1 and SUVH3 bind methylated ROS1 promoter regions, inhibiting chromatin interactions around the ROS1 locus; heat stress triggers their dissociation, enabling chromatin loop formation to suppress ROS1 transcription. Transgenic plants with exogenous ROS1 maintain high expression levels during heat stress, causing transposable element hypomethylation and enhanced transcription and transgenerational transposition of the heat-activated retrotransposon ONSEN. We propose that heat-induced suppression of ROS1 transcription, which is conserved across plant species, serves as a brake system to limit transposable element activation, thereby safeguarding genome stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Heat stress represses ROS1 expression by reducing DNA methylation within its promoter region.
Fig. 2: Heat stress represses ROS1 expression by enhancing local chromatin interactions around the enROS1 locus.
Fig. 3: ROS1 transgenic plants promote heat-induced ONSEN transcription and transposition.
Fig. 4: ROS1 regulates the expression of ONSEN through active DNA demethylation.
Fig. 5: Repressing ROS1 expression by heat stress is conserved across plant species.
Fig. 6: A working model of plants repressing ROS1 expression to attenuate heat-induced ONSEN transcription and transposition in Arabidopsis.

Similar content being viewed by others

Data availability

RNA-seq data of Col-0 under normal, heat stress and recovery conditions were previously deposited in Gene Expression Omnibus under accession number GSE132415. Hi-C data of Col-0 under normal and heat stress conditions were previously deposited in the National Center for Biotechnology Information Sequence Read Archive under accession number PRJNA545383. Methylome data (Col-0 under normal condition; Col-0, ros1-4 and SP:ROS1-GFP under heat stress) and ATAC-seq data (Col-0 under control versus heat stress) have been submitted to the China National Center for Bioinformation under accession number PRJCA036954 (the link for WGBS data is https://ngdc.cncb.ac.cn/gsa/s/UTraPW9M; the link for ATAC-seq data is https://ngdc.cncb.ac.cn/gsa/s/h6dC68Mx). All other supporting data are included in the article or its Supplementary Information. Source data are provided with this paper.

References

  1. Law, J. A. & Jacobsen, S. E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11, 204–220 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Reik, W., Dean, W. & Walter, J. Epigenetic reprogramming in mammalian development. Science 293, 1089–1093 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, H. M., Lang, Z. B. & Zhu, J. K. Dynamics and function of DNA methylation in plants. Nat. Rev. Mol. Cell Biol. 19, 489–506 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Henderson, I. R. & Jacobsen, S. E. Epigenetic inheritance in plants. Nature 447, 418–424 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Jing, Y. Q. et al. SUVH2 and SUVH9 couple two essential steps for transcriptional gene silencing in Arabidopsis. Mol. Plant 9, 1156–1167 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Lister, R. et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133, 523–536 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang, H. M. & Zhu, J. K. RNA-directed DNA methylation. Curr. Opin. Plant Biol. 14, 142–147 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Matzke, M. A. & Mosher, R. A. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat. Rev. Genet. 15, 394–408 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Stroud, H. et al. Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat. Struct. Mol. Biol. 21, 64–72 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Zemach, A. et al. The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153, 193–205 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gong, Z. H. et al. ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell 111, 803–814 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Williams, B. P., Pignatta, D., Henikoff, S. & Gehring, M. Methylation-sensitive expression of a DNA demethylase gene serves as an epigenetic rheostat. PLoS Genet. 11, e1005142 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lei, M. et al. Regulatory link between DNA methylation and active demethylation in Arabidopsis. Proc. Natl Acad. Sci. USA 112, 3553–3557 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Harris, C. J. et al. A DNA methylation reader complex that enhances gene transcription. Science 362, 1182–1186 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xiao, X. L. et al. A group of SUVH methyl-DNA binding proteins regulate expression of the DNA demethylase ROS1 in Arabidopsis. J. Integr. Plant Biol. 61, 110–119 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Zhao, Q. Q., Lin, R. N., Li, L., Chen, S. & He, X. J. A methylated-DNA-binding complex required for plant development mediates transcriptional activation of promoter methylated genes. J. Integr. Plant Biol. 61, 120–139 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Liu, J. Z., Feng, L. L., Li, J. M. & He, Z. H. Genetic and epigenetic control of plant heat responses. Front. Plant Sci. 6, 267 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Perrella, G., Bäurle, I. & van Zanten, M. Epigenetic regulation of thermomorphogenesis and heat stress tolerance. New Phytol. 234, 1144–1160 (2022).

    Article  PubMed  Google Scholar 

  19. Torres, J. R. & Sanchez, D. H. Emerging roles of plant transcriptional gene silencing under heat. Plant J. 119, 1197–1209 (2024).

    Article  CAS  PubMed  Google Scholar 

  20. Ito, H. et al. An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 472, 115–119 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Sun, L. H. et al. Heat stress-induced transposon activation correlates with 3D chromatin organization rearrangement in Arabidopsis. Nat. Commun. 11, 1886 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cavrak, V. V. et al. How a retrotransposon exploits the plant’s heat stress response for its activation. PLoS Genet. 10, e1004115 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Williams, B. & Gehring, M. Stable transgenerational epigenetic inheritance requires a DNA methylation-sensing circuit. Nat. Commun. 8, 2124 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. He, L. et al. Pathway conversion enables a double-lock mechanism to maintain DNA methylation and genome stability. Proc. Natl Acad. Sci. USA 118, e2107320118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Erdmann, R. M. & Picard, C. L. RNA-directed DNA methylation. PLoS Genet. 16, e1009034 (2020).

  26. Nozawa, K. et al. DNA methyltransferase CHROMOMETHYLASE 3 prevents ONSEN transposon silencing under heat stress. PLoS Genet. 17, e1009710 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, C. et al. Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution. Genome Res. 26, 1057–1068 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, X. K. et al. The cytosolic Fe-S cluster assembly component MET18 is required for the full enzymatic activity of ROS1 in active DNA demethylation. Sci. Rep. 6, 26443 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhu, J. H., Kapoor, A., Sridhar, V. V., Agius, F. & Zhu, J. K. The DNA glycosylase/lyase ROS1 functions in pruning DNA methylation patterns in Arabidopsis. Curr. Biol. 17, 54–59 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, L. C. et al. Arabidopsis HIT4 encodes a novel chromocentre-localized protein involved in the heat reactivation of transcriptionally silent loci and is essential for heat tolerance in plants. J. Exp. Bot. 64, 1689–1701 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Lee, S. C. & Martienssen, R. A. Regulation of retrotransposition in Arabidopsis. Biochem. Soc. Trans. 49, 2241–2251 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, P. P. et al. Extrachromosomal circular DNA and structural variants highlight genome instability in Arabidopsis epigenetic mutants. Nat. Commun. 14, 5236 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang, H., Gong, Z. Z. & Zhu, J. K. Active DNA demethylation in plants: 20 years of discovery and beyond. J. Integr. Plant Biol. 64, 2217–2239 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Liang, Z. et al. Reorganization of the 3D chromatin architecture of rice genomes during heat stress. BMC Biol. 19, 53 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang, F. F. et al. Plant-specific histone deacetylases associate with ARGONAUTE4 to promote heterochromatin stabilization and plant heat tolerance. New Phytol. 238, 252–269 (2023).

    Article  CAS  PubMed  Google Scholar 

  36. Lang, Z. B. et al. Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit. Proc. Natl Acad. Sci. USA 114, E4511–E4519 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Folsom, J. J., Begcy, K., Hao, X. J., Wang, D. & Walia, H. Rice Fertilization-Independent Endosperm1 regulates seed size under heat stress by controlling early endosperm development. Plant Physiol. 165, 238–248 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hossain, M. S. et al. Divergent cytosine DNA methylation patterns in single-cell, soybean root hairs. New Phytol. 214, 808–819 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Ma, Y. Z. et al. Disrupted genome methylation in response to high temperature has distinct affects on microspore abortion and anther indehiscence. Plant Cell 30, 1387–1403 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. López, M. E., Roquis, D., Becker, C., Denoyes, B. & Bucher, E. DNA methylation dynamics during stress response in woodland strawberry (Fragaria vesca). Hortic. Res. 9, uhac174 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gao, G. Z. et al. Comparison of the heat stress induced variations in DNA methylation between heat-tolerant and heat-sensitive rapeseed seedlings. Breed. Sci. 64, 125–133 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, J. et al. Global DNA methylation variations after short-term heat shock treatment in cultured microspores of Brassica napus cv Topas. Sci. Rep. 6, 38401 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Qin, W. Q. et al. Activation tagging identifies WRKY14 as a repressor of plant thermomorphogenesis in Arabidopsis. Mol. Plant 15, 1725–1743 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Seo, P. J. et al. A self-regulatory circuit of CIRCADIAN CLOCK-ASSOCIATED1 underlies the circadian clock regulation of temperature responses in Arabidopsis. Plant Cell 24, 2427–2442 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, H. R. et al. Thermosensitive SUMOylation of TaHsfA1 defines a dynamic ON/OFF molecular switch for the heat stress response in wheat. Plant Cell 35, 3889–3910 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zeng, J. et al. Nitric oxide controls shoot meristem activity via regulation of DNA methylation. Nat. Commun. 14, 8001 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, Z. Y. et al. OsMAPK3 phosphorylates OsbHLH002/OsICE1 and inhibits its ubiquitination to activate OsTPP1 and enhances rice chilling tolerance. Dev. Cell 43, 731–743 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. La, H. G. et al. A 5-methylcytosine DNA glycosylase/lyase demethylates the retrotransposon Tos17 and promotes its transposition in rice. Proc. Natl Acad. Sci. USA 108, 15498–15503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hayashi, Y. et al. ONSEN shows different transposition activities in RdDM pathway mutants. Genes Genet. Syst. 95, 183–190 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Akakpo, R., Carpentier, M. C., Ie Hsing, Y. & Panaud, O. The impact of transposable elements on the structure, evolution and function of the rice genome. New Phytol. 226, 44–49 (2020).

    Article  PubMed  Google Scholar 

  51. Bourque, G. et al. Ten things you should know about transposable elements. Genome Biol. 19, 199 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Roquis, D. et al. Genomic impact of stress-induced transposable element mobility in Arabidopsis. Nucleic Acids Res. 49, 10431–10447 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Huang, T. X. et al. Evolution of lmiRNAs and their targets from MITEs for rice adaptation. J. Integr. Plant Biol. 64, 2411–2424 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Li, J., Wang, Z., Peng, H. & Liu, Z. A MITE insertion into the 3′-UTR regulates the transcription of TaHSP16.9 in common wheat. Crop J. 2, 381–387 (2014).

    Article  Google Scholar 

  55. Shen, J. Q. et al. Translational repression by a miniature inverted-repeat transposable element in the 3′ untranslated region. Nat. Commun. 8, 14651 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Venkatesh & Nandini, B. Miniature inverted-repeat transposable elements (MITEs), derived insertional polymorphism as a tool of marker systems for molecular plant breeding. Mol. Biol. Rep. 47, 3155–3167 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, H. T. et al. Transposon-derived small RNA is responsible for modified function of WRKY45 locus. Nat. Plants 2, 16016 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Zervudacki, J. et al. Transcriptional control and exploitation of an immune-responsive family of plant retrotransposons. EMBO J. 37, e98482 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Baduel, P. et al. Genetic and environmental modulation of transposition shapes the evolutionary potential of Arabidopsis thaliana. Genome Biol. 22, 138 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lisch, D. How important are transposons for plant evolution? Nat. Rev. Genet. 14, 49–61 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Ye, R. Q. et al. Cytoplasmic assembly and selective nuclear import of Arabidopsis ARGONAUTE4/siRNA complexes. Mol. Cell 46, 859–870 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Louwers, M., Splinter, E., van Driel, R., de Laat, W. & Stam, M. Studying physical chromatin interactions in plants using Chromosome Conformation Capture (3C). Nat. Protoc. 4, 1216–1229 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Wang, X. K., Chen, X. D., Sun, L. H. & Qian, W. Q. Canonical cytosolic iron-sulfur cluster assembly and non-canonical functions of DRE2 in Arabidopsis. PLoS Genet. 15, e1008094 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yuan, W. et al. ALBA protein complex reads genic R-loops to maintain genome stability in Arabidopsis. Sci. Adv. 5, eaav9040 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liang, W. J. et al. Deciphering the synergistic and redundant roles of CG and non-CG DNA methylation in plant development and transposable element silencing. New Phytol. 233, 722–737 (2022).

    Article  CAS  PubMed  Google Scholar 

  66. Lin, W. et al. Active DNA demethylation regulates tracheary element differentiation in Arabidopsis. Sci. Adv. 6, eaaz2963 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yin, X. C. et al. H2AK121ub in Arabidopsis associates with a less accessible chromatin state at transcriptional regulation hotspots. Nat. Commun. 12, 315 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Jacobson for providing seeds of the suvh1 suvh3 mutant. This study was supported by the National Natural Science Foundation of China (32170285 to L.-M.F. and 32270288 to W.Q.) and Beijing Life Science Academy (BLSA: 2024500CA0010 to W.Q.).

Author information

Authors and Affiliations

Authors

Contributions

L.F., L.-M.F. and W.Q. designed the research; L.F., Y.J. and X.L. performed the experiments and analysed the data; W.Z., Y.M. and L.S. performed the bioinformatics analysis. L.F. drafted the paper; L.-M.F. and W.Q. revised the paper.

Corresponding author

Correspondence to Weiqiang Qian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Hidetaka Ito and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 ROS1 expression levels in the relative epigenetic mutants.

a, Quantification of ROS1 expression levels in Col-0, nrpd1-3, and nrpe1-11 under control and heat-stress conditions. Data represent mean ± s.d., n = 3 biological replicates. Two-tailed student’s t-test. b, Bisulfite sequencing data showing DNA methylation levels in the ROS1 MEMS region in rdd-2 under control and heat-stress conditions. At least 20 clones were sequenced for each sample. Each circle represents one biological replicate (n = 2 biological replicates). c, Quantification of ROS1 expression levels in Col-0, ros1-4, and rdd-2 under control and heat conditions. Data represent mean ± s.d., n = 3 biological replicates. Two-tailed student’s t-test.

Extended Data Fig. 2 Heat stress selectively targets the enROS1 locus rather than the exROS1 locus.

a, Quantification of total ROS1 transcript levels in Col-0 and NP:ROS1-LUC (ProROS1:ROS1-LUC/Col-0) transgenic lines. Data represent mean ± s.d., n = 3 biological replicates. Two-tailed Student’s t-test. b, Quantification of total ROS1 transcript levels in Col-0 and NP:ROS1-Myc (ProROS1:ROS1-Myc/Col-0) transgenic lines. Data represent mean ± s.d., n = 3 biological replicates. Two-tailed Student’s t-test. c, Quantification of enROS1 (left panel) and exROS1 (right panel) transcript levels in NP:ROS1-Myc transgenic lines under control and heat conditions. Data represent mean ± s.d., n = 3 biological replicates. Two-tailed Student’s t-test. d, Relative quantification of ROS1 transcript levels in Col-0 and SP:ROS1-GFP (super1300:ROS1-GFP/ros1-4) transgenic plants under control and heat-stress conditions. Data represent mean ± s.d., n = 3 biological replicates. Two-tailed Student’s t-test. e, Snapshots in the integrated Genome Browser (IGV) showing the ATAC-seq peak at the promoter of ROS1 (AT2G36490) in Col-0 under control (22 °C) and heat (37 °C) conditions.

Extended Data Fig. 3 SUVH1 binds DNA methylation in the ROS1 promoter and promotes ROS1 expression.

a, ChIP-qPCR assay analyzing the binding of SUVH1 at the ROS1 locus. The upper schematic illustrates the positions of primers (P1 - P3), and the lower column chart depicts the enrichment of SUVH1 at the ROS1 locus. Data represent mean ± s.d., n = 3 biological replicates. Two-tailed Student’s t-test. b, Quantification of SUVH1 transcript levels in Col-0 and SUVH1-Flag transgenic plants under control and heat-stress conditions. Data represent mean ± s.d., n = 3 biological replicates. Two-tailed Student’s t-test. c, Western blot analysis showing protein levels of SUVH1 under control (C) and heat-stress (H) conditions. ACTIN protein was used as the loading control. d, Quantification of ROS1 transcript levels in Col-0 and suvh1 suvh3 under control and heat-stress conditions. Data represent mean ± s.d., n = 3 biological replicates. Two-way ANOVA with Bonferroni’s multiple comparisons test.

Source data

Extended Data Fig. 4 Overexpression of ROS1 under heat-stress conditions promotes TE expression.

Relative quantification of ROMANIAT5, AtMU1, and TSI transcript levels in Col-0 and ROS1 transgenic lines under control and heat conditions. Data represent mean ± s.d., n = 3 biological replicates. Two-way ANOVA with Bonferroni’s multiple comparisons test.

Extended Data Fig. 5 ROS1 regulates TE expression via its demethylase activity.

a-c, IGV snapshots showing DNA methylation levels at ONSEN, ROMANIAT5, AtMU1, AtMU2 and AtGP10 loci in Col-0 (22 °C), Col-0 (37 °C), ros1-4 (37 °C) and SP:ROS1-GFP (37 °C) plants. TE promoter regions are highlighted by red boxes. d, Bisulfite sequencing data showing CHH methylation levels in the regions spanning upstream, LTR, and partial ORF of ONSEN2 (AT3TE92525) in Col-0 (22 °C), Col-0 (37 °C), and SP:ROS1-GFP (37 °C) plants. At least 20 clones were sequenced for each sample. Each circle represents one biological replicate (n = 2 biological replicates). LTR, long terminal repeat; ORF, open reading frame; Red line represents the genomic location of BS-PCR amplification products. e, Relative quantification of ROMANIAT5, AtMU1, and TSI expression levels in Col-0, SP:ROS1-Flag, and SP:ROS1C1045S-Flag transgenic lines under control and heat-stress conditions. Data represent mean ± s.d., n = 3 biological replicates. Two-way ANOVA with Bonferroni’s multiple comparisons test.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4.

Reporting Summary

Supplementary Data 1

Primers and probes used in this study.

Supplementary Data 2

Information of ROS1 homologues in different species.

Supplementary Data 3

Statistical source data for Supplementary Fig. 2.

Source data

Source Data Extended Data Fig. 3

Uncropped western blots for Extended Dada Fig. 3c.

Source Data

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, L., Jing, Y., Liu, X. et al. Plants repress ROS1 expression to attenuate heat-induced transposon burst. Nat. Plants 11, 1785–1797 (2025). https://doi.org/10.1038/s41477-025-02076-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41477-025-02076-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing