Table 1 Bayesian Pearson correlational analysis results

From: Level of M1 GABAB predicts micro offline consolidation of motor learning during wakefulness

Bayesian Pearson correlations

 

Pearson’s r

BF10

MEP-micro-online-T

−0.431

1.107

MEP-micro-offline-T

0.265

0.486

MEP-K1

−0.062

0.316

MEP-K2

−0.038

0.311

MEP-K3

−0.247

0.457

MEP-Block-T

0.267

0.49

MEP-Tapping-Speed_T

−0.147

0.354

SICI-micro-online-T

0.182

0.381

SICI-micro-offline-T

−0.114

0.335

SICI-K1

0.249

0.460

SICI-K2

−0.286

0.525

SICI-K3

0.282

0.518

SICI-Block-T

−0.06

0.315

SICI-Tapping-Speed_T

−0.108

0.332

ICF-micro-online-T

0.458

1.335

ICF-micro-offline-T

−0.239

0.445

ICF-K1

0.21

0.409

ICF-K2

−0.126

0.341

ICF-K3

−0.155

0.359

ICF-Block-T

0.069

0.318

ICF-Tapping-Speed_T

0.025

0.31

sICF-micro-online-T

0.174

0.374

sICF-micro-offline-T

0.244

0.452

sICF-K1

0.511

2.034

sICF-K2

−0.415

1.005

sICF-K3

0.065

0.317

sICF-Block-T

0.069

0.318

sICF-Tapping-Speed_T

0.17

0.371

LICI-micro-online-T

0.485

1.639

LICI-micro-offline-T

−0.834

*** 468.802

LICI-K1

−0.249

0.461

LICI-K2

0.159

0.362

LICI-K3

0.137

0.347

LICI-Block-T

−0.245

0.454

LICI-Tapping-Speed_T

−0.316

0.595

  1. *** BF10 > 100.