Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Digital micelles of encoded polymeric amphiphiles for direct sequence reading and ex vivo label-free quantification

Abstract

Identification and quantification of synthetic polymers in complex biological milieu are crucial for delivery, sensing and scaffolding functions, but conventional techniques based on imaging probe labellings only afford qualitative results. Here we report modular construction of precise sequence-defined amphiphilic polymers that self-assemble into digital micelles with contour lengths strictly regulated by oligourethane sequences. Direct sequence reading is accomplished with matrix-assisted laser desorption/ionization (MALDI) tandem mass spectrometry, facilitated by high-affinity binding of alkali metal ions with poly(ethylene glycol) dendrons and selective cleavage of benzyl-carbamate linkages. A mixture of four types of digital micelles could be identified, sequence-decoded and quantified by MALDI and MALDI imaging at cellular, organ and tissue slice levels upon in vivo administration, enabling direct comparison of biological properties for each type of digital micelle in the same animal. The concept of digital micelles and encoded amphiphiles capable of direct sequencing and high-throughput label-free quantification could be exploited for next-generation precision nanomedicine designs (such as digital lipids) and protein corona studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Direct sequence reading of encoded polymeric amphiphiles and sequence-regulated self-assembly into digital micelles for label-free ex vivo quantification.
Fig. 2: Modular synthesis of sequence-defined polyurethanes with uniform chain lengths.
Fig. 3: Facile synthesis of sequence-defined polyurethanes via orthogonal isocyanate-generating chemistries.
Fig. 4: Direct reading of sequence-defined polyurethanes via MALDI tandem MS.
Fig. 5: Sequence-regulated self-assembly of encoded polymeric amphiphiles into digital micelles with tunable contour lengths.
Fig. 6: Identification and label-free quantification of digital micelles at organ and tissue slice levels.

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the article, the associated source data and its Supporting Information and can also be obtained from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic: an update. Bioeng. Transl. Med. 4, e10143 (2019).

    Article  Google Scholar 

  2. Shi, J. J., Kantoff, P. W., Wooster, R. & Farokhzad, O. C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17, 20–37 (2017).

    Article  CAS  Google Scholar 

  3. Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016).

    Article  CAS  Google Scholar 

  4. Sindhwani, S. et al. The entry of nanoparticles into solid tumours. Nat. Mater. 19, 566–575 (2020).

    Article  CAS  Google Scholar 

  5. Kunjachan, S., Ehling, J., Storm, G., Kiessling, F. & Lammers, T. Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects. Chem. Rev. 115, 10907–10937 (2015).

    Article  CAS  Google Scholar 

  6. Green, J. J. & Elisseeff, J. H. Mimicking biological functionality with polymers for biomedical applications. Nature 540, 386–394 (2016).

    Article  CAS  Google Scholar 

  7. Morsbach, S. et al. Engineering proteins at interfaces: from complementary characterization to material surfaces with designed functions. Angew. Chem. Int. Ed. 57, 12626–12648 (2018).

    Article  CAS  Google Scholar 

  8. Winzen, S., Koynov, K., Landfester, K. & Mohr, K. Fluorescence labels may significantly affect the protein adsorption on hydrophilic nanomaterials. Colloid Surf. B 147, 124–128 (2016).

    Article  CAS  Google Scholar 

  9. Kreyling, W. G. et al. In vivo integrity of polymer-coated gold nanoparticles. Nat. Nanotechnol. 10, 619–623 (2015).

    Article  CAS  Google Scholar 

  10. Meng, F. F., Wang, J. P., Ping, Q. N. & Yeo, Y. Quantitative assessment of nanoparticle biodistribution by fluorescence imaging, revisited. ACS Nano 12, 6458–6468 (2018).

    Article  CAS  Google Scholar 

  11. Zhao, Z. et al. Revisiting an ancient inorganic aggregation-induced emission system: an enlightenment to clusteroluminescence. Aggregate 2, e36 (2021).

    Google Scholar 

  12. Geng, Y. et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2, 249–255 (2007).

    Article  CAS  Google Scholar 

  13. Lutz, J.-F., Lehn, J.-M., Meijer, E. W. & Matyjaszewski, K. From precision polymers to complex materials and systems. Nat. Rev. Mater. 1, 16024 (2016).

    Article  CAS  Google Scholar 

  14. Lutz, J.-F., Ouchi, M., Liu, D. R. & Sawamoto, M. Sequence-controlled polymers. Science 341, 1238149 (2013).

    Article  Google Scholar 

  15. Meier, M. A. R. & Barner-Kowollik, C. A new class of materials: sequence-defined macromolecules and their emerging applications. Adv. Mater. 31, 1806027 (2019).

    Article  Google Scholar 

  16. Lee, J. M. et al. Semiautomated synthesis of sequence-defined polymers for information storage. Sci. Adv. 8, eabl8614 (2022).

    Article  CAS  Google Scholar 

  17. Gunay, U. S. et al. Chemoselective synthesis of uniform sequence-coded polyurethanes and their use as molecular tags. Chem. 1, 114–126 (2016).

    Article  CAS  Google Scholar 

  18. Zydziak, N. et al. Coding and decoding libraries of sequence-defined functional copolymers synthesized via photoligation. Nat. Commun. 7, 13672 (2016).

    Article  Google Scholar 

  19. Martens, S. et al. Multifunctional sequence-defined macromolecules for chemical data storage. Nat. Commun. 9, 4451 (2018).

    Article  Google Scholar 

  20. Konig, N. F. et al. Photo-editable macromolecular information. Nat. Commun. 10, 3774 (2019).

    Article  Google Scholar 

  21. Song, B., Lu, D., Qin, A. & Tang, B. Z. Combining hydroxyl-yne and thiol-ene click reactions to facilely access sequence-defined macromolecules for high-density data storage. J. Am. Chem. Soc. 144, 1672–1680 (2022).

    Article  CAS  Google Scholar 

  22. Launay, K. et al. Precise alkoxyamine design to enable automated tandem mass spectrometry sequencing of digital poly(phosphodiester)s. Angew. Chem. Int. Ed. 60, 917–926 (2020).

    Article  Google Scholar 

  23. De Bruycker, K., Welle, A., Hirth, S., Blanksby, S. J. & Barner-Kowollik, C. Mass spectrometry as a tool to advance polymer science. Nat. Rev. Chem. 4, 257–268 (2020).

    Article  Google Scholar 

  24. Soete, M. & Du Prez, F. E. Sequencing of uniform multifunctional oligoesters via random chain cleavages. Angew. Chem. Int. Ed. 61, e202202819 (2022).

    Article  CAS  Google Scholar 

  25. Yan, X. Y. et al. Magnifying the structural components of biomembranes: a prototype for the study of the self-assembly of giant lipids. Angew. Chem. Int. Ed. 59, 5226–5234 (2020).

    Article  CAS  Google Scholar 

  26. Sternhagen, G. L. et al. Solution self-assemblies of sequence-defined ionic peptoid block copolymers. J. Am. Chem. Soc. 140, 4100–4109 (2018).

    Article  CAS  Google Scholar 

  27. Zhao, Z., He, W. & Tang, B. Z. Aggregate materials beyond alegens. Acc. Mater. Res. 2, 1251–1260 (2021).

    Article  CAS  Google Scholar 

  28. Yaari, Z. et al. Theranostic barcoded nanoparticles for personalized cancer medicine. Nat. Commun. 7, 13325 (2016).

    Article  CAS  Google Scholar 

  29. Dahlman, J. E. et al. Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. Proc. Natl Acad. Sci. USA 114, 2060–2065 (2017).

    Article  CAS  Google Scholar 

  30. Altuntas, E. & Schubert, U. S. ‘Polymeromics’: mass spectrometry based strategies in polymer science toward complete sequencing approaches: a review. Anal. Chim. Acta 808, 56–69 (2014).

    Article  CAS  Google Scholar 

  31. Liou, C. C. & Brodbelt, J. S. Determination of orders of relative alkali-metal ion affinities of crown ethers and acyclic analogs by the kinetic method. J. Am. Soc. Mass. Spectrom. 3, 543–548 (1992).

    Article  CAS  Google Scholar 

  32. Zhang, X. & Wang, C. Supramolecular amphiphiles. Chem. Soc. Rev. 40, 94–101 (2011).

    Article  CAS  Google Scholar 

  33. Huang, Z. et al. Binary tree-inspired digital dendrimer. Nat. Commun. 10, 1918 (2019).

    Article  Google Scholar 

  34. Holloway, J. O., Van Lijsebetten, F., Badi, N., Houck, H. A. & Du Prez, F. E. From sequence-defined macromolecules to macromolecular pin codes. Adv. Sci. 7, 1903698 (2020).

    Article  CAS  Google Scholar 

  35. Carl, P. L., Chakravarty, P. K. & Katzenellenbogen, J. A. A novel connector linkage applicable in prodrug design. J. Med. Chem. 24, 479–480 (1981).

    Article  CAS  Google Scholar 

  36. Sagi, A., Weinstain, R., Karton, N. & Shabat, D. Self-immolative polymers. J. Am. Chem. Soc. 130, 5434–5435 (2008).

    Article  CAS  Google Scholar 

  37. Shelef, O., Gnaim, S. & Shabat, D. Self-immolative polymers: an emerging class of degradable materials with distinct disassembly profiles. J. Am. Chem. Soc. 143, 21177–21188 (2021).

    Article  CAS  Google Scholar 

  38. Liu, G., Wang, X., Hu, J., Zhang, G. & Liu, S. Self-immolative polymersomes for high-efficiency triggered release and programmed enzymatic reactions. J. Am. Chem. Soc. 136, 7492–7497 (2014).

    Article  CAS  Google Scholar 

  39. Ding, Z. et al. Self-immolative nanoparticles for stimuli-triggered activation, covalent trapping and accumulation of in situ generated small molecule theranostic fragments. Giant 1, 100012 (2020).

    Article  Google Scholar 

  40. Cho, C. Y. et al. An unnatural biopolymer. Science 261, 1303–1305 (1993).

    Article  CAS  Google Scholar 

  41. Ghosh, A. K., Sarkar, A. & Brindisi, M. The Curtius rearrangement: mechanistic insight and recent applications in natural product syntheses. Org. Biomol. Chem. 16, 2006–2027 (2018).

    Article  CAS  Google Scholar 

  42. Takizawa, K., Tang, C. & Hawker, C. J. Molecularly defined caprolactone oligomers and polymers: synthesis and characterization. J. Am. Chem. Soc. 130, 1718–1726 (2008).

    Article  CAS  Google Scholar 

  43. Bott, G., Field, L. D. & Sternhell, S. Steric effects—a study of a rationally designed system. J. Am. Chem. Soc. 102, 5618–5626 (1980).

    Article  CAS  Google Scholar 

  44. Yoshimura, A., Luedtke, M. W. & Zhdankin, V. V. (Tosylimino)phenyl-λ3-iodane as a reagent for the synthesis of methyl carbamates via Hofmann rearrangement of aromatic and aliphatic carboxamides. J. Org. Chem. 77, 2087–2091 (2012).

    Article  CAS  Google Scholar 

  45. Mondal, T., Charles, L. & Lutz, J. F. Damage and repair in informational poly(n-substituted urethane)s. Angew. Chem. Int. Ed. 59, 20390–20393 (2020).

    Article  CAS  Google Scholar 

  46. Dahlhauser, S. D. et al. Sequencing of sequence-defined oligourethanes via controlled self-immolation. J. Am. Chem. Soc. 142, 2744–2749 (2020).

    Article  CAS  Google Scholar 

  47. Hu, X. L. et al. Polyprodrug amphiphiles: hierarchical assemblies for shape-regulated cellular internalization, trafficking, and drug delivery. J. Am. Chem. Soc. 135, 17617–17629 (2013).

    Article  CAS  Google Scholar 

  48. He, Y. et al. Uniform biodegradable fiber-like micelles and block comicelles via ‘living’ crystallization-driven self-assembly of poly(l-lactide) block copolymers: the importance of reducing unimer self-nucleation via hydrogen bond disruption. J. Am. Chem. Soc. 141, 19088–19098 (2019).

    Article  CAS  Google Scholar 

  49. Li, L. et al. A general strategy toward synthesis of well-defined polypeptides with complex chain topologies. CCS Chem. 4, https://doi.org/10.31635/ccschem.31022.202101704 (2022).

  50. Gilroy, J. B. et al. Monodisperse cylindrical micelles by crystallization-driven living self-assembly. Nat. Chem. 2, 566–570 (2010).

    Article  CAS  Google Scholar 

  51. Das, A. et al. Consequences of dispersity on the self-assembly of ABA-type amphiphilic block co-oligomers. ACS Macro Lett. 7, 546–550 (2018).

    Article  CAS  Google Scholar 

  52. Champion, J. A. & Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl Acad. Sci. USA 103, 4930–4934 (2006).

    Article  CAS  Google Scholar 

  53. Brown, T. D., Habibi, N., Wu, D., Lahann, J. & Mitragotri, S. Effect of nanoparticle composition, size, shape, and stiffness on penetration across the blood-brain barrier. ACS Biomater. Eng. 6, 4916–4928 (2020).

    Article  CAS  Google Scholar 

  54. Nguyen, H. V. T. et al. Bottlebrush polymers with flexible enantiomeric side chains display differential biological properties. Nat. Chem. 14, 85–93 (2022).

    Article  CAS  Google Scholar 

  55. Zhang, K. et al. Shape effects of nanoparticles conjugated with cell-penetrating peptide (HIV Tat PTD) on CHO cell uptake. Bioconjugate Chem. 19, 1880–1887 (2008).

    Article  CAS  Google Scholar 

  56. Gratton, S. E. A. et al. The effect of particle design on cellular internalization pathways. Proc. Natl Acad. Sci. USA 105, 11613–11618 (2008).

    Article  CAS  Google Scholar 

  57. Zhou, Q. et al. Enzyme-activatable polymer–drug conjugate augments tumour penetration and treatment efficacy. Nat. Nanotechnol. 14, 799–809 (2019).

    Article  CAS  Google Scholar 

  58. Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    Article  CAS  Google Scholar 

  59. Zhu, X. et al. Long-circulating siRNA nanoparticles for validating prohibitin1-targeted non-small cell lung cancer treatment. Proc. Natl Acad. Sci. USA 112, 7779–7784 (2015).

    Article  CAS  Google Scholar 

  60. Bourquin, J. et al. Biodistribution, clearance, and long-term fate of clinically relevant nanomaterials. Adv. Mater. 30, 1704307 (2018).

    Article  Google Scholar 

  61. Zhang, H., Xie, F., Cheng, M. & Peng, F. Novel meta-iodobenzylguanidine-based copper thiosemicarbazide-1-guanidinomethylbenzyl anticancer compounds targeting norepinephrine transporter in neuroblastoma. J. Med. Chem. 62, 6985–6991 (2019).

    Article  CAS  Google Scholar 

  62. Usov, I. & Mezzenga, R. Fiberapp: an open-source software for tracking and analyzing polymers, filaments, biomacromolecules, and fibrous objects. Macromolecules 48, 1269–1280 (2015).

    Article  CAS  Google Scholar 

  63. Francl, M. M. et al. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J. Chem. Phys. 77, 3654–3665 (1982).

    Article  CAS  Google Scholar 

  64. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  Google Scholar 

  65. Krishnan, R., Binkley, J. S., Seeger, R. & Pople, J. A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72, 650–654 (1980).

    Article  CAS  Google Scholar 

  66. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the National Key Research and Development Program of China (2020YFA0710700), the National Natural Science Foundation of China (NNSFC) Project (51690150, 51690154, 52021002, 21925107 and U19A2094) and Fundamental Research Funds for the Central Universities is gratefully acknowledged. This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication. We thank the staff from the BL19U2 beamline of the National Facility for Protein Science in Shanghai (NFPS) at the Shanghai Synchrotron Radiation Facility for assistance during SAXS data collection.

Author information

Authors and Affiliations

Authors

Contributions

S.Y.L. conceived and thoroughly supervised the project. S.Y.L. and Q.Q.S. designed the experiments and analysed the data. Q.Q.S. conducted the experiments with assistance from R.D.S., J.X., J.J.T., X.Z. and J.C. MALDI–TOF MS and MALDI imaging experiments were conducted with help from H.Y. and Z.B.Z. Cryo-TEM characterization was conducted with help from H.M.T., C.H.C. and Y.F.Z. ESI-MS characterization and MS data interpretation were conducted with assistance from X.P.L. Q.Q.S., Z.Y.D., X.P.L. and S.Y.L. wrote the manuscript.

Corresponding author

Correspondence to Shiyong Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Kanjiro Miyata, Donghui Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Sequence reading of encoded amphiphiles.

MALDI tandem MS recorded for T-000′00000-dPEG; the benzyl-O linkage in 0′ unit (pink) remains inert and does not undergo fragmentation, indicating the bond-selective nature.

Source data

Extended Data Fig. 2 Characterization of self-assembled nanorods and quantification of encoded amphiphiles.

a, Sequence-regulated evolution of self-assembled nanorod lengths (n represents the number of digital micelles measured, data are presented as mean values ± SD). b, Standard calibration curves of sequence-defined polyurethanes relative to the control (T-010101-dPEG) for MALDI–TOF MS quantification (n = 3 independent experiments; data are presented as mean values ± SD).

Source data

Extended Data Fig. 3 Comparison of MALDI detection sensitivities for encoded amphiphiles.

a,b, S/N values in MALDI characterization of T-00000000-dPEG and T-11111111-dPEG, and MALDI samples were prepared from unimer (THF solution) and micellar state (aqueous dispersion) at varying concentrations (n = 3 independent experiments; data are presented as mean values ± SEM). c,d, MALDI–TOF mass spectra recorded for T-00000000-dPEG and T-11111111-dPEG; MALDI samples were prepared from unimer (THF solution) and micellar state (aqueous dispersion) at 0.5 μg/mL and 1.0 μg/mL, respectively. e,f, MALDI–TOF mass spectra recorded for T-000000-dPEG in the unimer state (THF solution) and (b) micellar state (aqueous dispersion) after coating onto rat spleen tissue slices and applying with DCTB/CF3COONa MALDI matrix. The negligible MS peak area difference indicated that encoded amphiphiles in the micellar NP state could be detected by MALDI with the sensitivity compared to those in the molecularly dissolved state.

Source data

Extended Data Fig. 4 Characterization of cationic lipid/siRNA/polymer hybrid NPs.

a, Schematics for the fabrication of cationic lipid/siRNA/polymer hybrid NPs assisted by the digital lipid (2C18-0101-OEG16-OH). b, TEM image and c, dynamic laser scattering (DLS) results recorded for hybrid NPs stabilized by 2C18-0101-OEG16-OH.

Source data

Extended Data Fig. 5 Comparison of cationic lipid/siRNA/polymer hybrid NPs stabilized by digital lipid versus that by DSPE-PEG.

a,b, Fluorescence emission spectra recorded for two types of FAM-siRNA-Luc hybrid NP dispersions and corresponding supernatant solutions after initially formed hybrid NPs were subjected ultrafiltration (MWCO, 100 kDa). c, Evolution of DLS sizes upon coincubation with 20% FBS. d,e, Evolution of emission intensities of two types of FAM-siRNA-Luc hybrid NPs upon co-incubation with 20% FBS. f, Uptake extents of FAM-siRNA-Luc hybrid NP stabilized by the digital lipid when co-incubated with BXPC-3 cells, as quantified by MALDI–TOF MS in a label-free manner (n = 3 biologically independent cells; data are presented as mean values ± SEM). g, CLSM images (FAM channel) of BXPC-3 cells upon co-incubation with two types of FAM-siRNA-Luc hybrid NPs, whereas naked FAM-siRNA-Luc was used as a control. Scale bar: 25 μm.

Source data

Extended Data Fig. 6 Biological behaviors of cationic lipid/siRNA/polymer hybrid NPs.

Comparison of luciferase expression levels in Pan 02-Luc cells transfected with FAM-siRAN-Luc hybrid NPs stabilized by either DSPE-PEG or the digital lipid (2C18-0101-OEG16-OH) at varying siRNA concentrations (n = 3 biologically independent cells; data are presented as mean values ± SEM).

Source data

Extended Data Fig. 7 Cell sorting protocols for the spleen organ.

Schematics of the sorting of immune cells (macrophages, T cells, B cells, and dendritic cells) and stromal cells from the spleen organ of BABL/c mice.

Extended Data Fig. 8 Quantification of cellular uptake extents.

Average absolute endocytosis mass of four types of encoded amphiphiles internalized by single stromal cell and each type immune cells (macrophage, T cell, B cell, and dendritic cell), which were sorted from the spleen organ of BABL/c mice sacrificed at a, 1 h and b, 6 h post i.v. injection of a mixture of four types of digital micelles (21 nm nanospheres and 45 nm, 78 nm, and 245 nm nanorods; 11.2 mg/mL in total, 2.8 mg/mL for each type). n.d.: not detected (n = 3 biologically independent animals; data are presented as mean values ± SEM).

Source data

Supplementary information

Supplementary Information

Supplementary Methods, Schemes 1–27, Characterization, Figs. 1–125 and Tables 1–5.

Reporting Summary

Supplementary Table 1

Readable versions of tables in the Supplementary Information file.

Source data

Source Data Fig. 2

Statistical Source Data

Source Data Fig. 3

Statistical Source Data

Source Data Fig. 4

Statistical Source Data

Source Data Fig. 5

Statistical Source Data

Source Data Fig. 6

Statistical Source Data

Source Data Extended Data Fig. 1

Statistical Source Data

Source Data Extended Data Fig. 2

Statistical Source Data

Source Data Extended Data Fig. 3

Statistical Source Data

Source Data Extended Data Fig. 4

Statistical Source Data

Source Data Extended Data Fig. 5

Statistical Source Data

Source Data Extended Data Fig. 6

Statistical Source Data

Source Data Extended Data Fig. 8

Statistical Source Data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Q., Yin, H., Song, R. et al. Digital micelles of encoded polymeric amphiphiles for direct sequence reading and ex vivo label-free quantification. Nat. Chem. 15, 257–270 (2023). https://doi.org/10.1038/s41557-022-01076-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-022-01076-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing