Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unlocking azole chemical space via modular and regioselective N-alkylation

Abstract

Azoles are important synthetic targets due to their diverse applications in areas ranging from human health to food security. Accordingly, access to N-functionalized azoles is an essential goal in modern synthetic chemistry. Surprisingly, however, the relied-upon azole N-alkylation strategies fundamentally limit the structural diversity of these important compounds that can be synthesized and studied. Here we introduce an approach to prepare a broad array of important but difficult-to-access N-alkyl azole compounds. We accomplish this through the introduction of a base-catalysed hydroazolation of readily accessible alkenylthianthrenium electrophiles. This strategy circumvents the classical challenge of azole alkylation regiocontrol through an unusual reversible C–N-bond-forming step that exploits the thermodynamic differences between azole N-alkylation isomers. This reaction furnishes a class of versatile azolothianthrenium building blocks that provides a general platform to investigate diverse N-alkyl azole molecules. More broadly, the distinctive approach outlined through this project is poised to impact the design and development of diverse regioselective alkylation reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Importance of azoles and synthetic approaches.
Fig. 2: Brønsted base catalysis enables N-regioselective hydroazolation of alkenylthianthrenium salts.
Fig. 3: One-pot synthesis of densely functionalized azoles.
Fig. 4: Synthetic opportunities enabled by reversible hydroazolation.

Similar content being viewed by others

Data availability

All data supporting the findings of this paper are available within the article and its Supplementary Information files. Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2393749 (4), 2393750 (50), 2393751 (51) and 2393752 (3-N1). Copies of the data can be obtained free of charge at https://www.ccdc.cam.ac.uk/structures.

References

  1. Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among US FDA approved pharmaceuticals: miniperspective. J. Med. Chem. 57, 10257–10274 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Kerru, N., Gummidi, L., Maddila, S., Gangu, K. K. & Jonnalagadda, S. B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules 25, 1909 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bhutani, P. et al. US FDA approved drugs from 2015–June 2020: a perspective. J. Med. Chem. 64, 2339–2381 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Jørgensen, L. N. & Heick, T. M. Azole use in agriculture, horticulture, and wood preservation—is it indispensable? Front.Cell. Infect. Microbiol. 11, 730297 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Halder, P., Roy, T. & Das, P. Recent developments in selective N-arylation of azoles. Chem. Commun. 57, 5235–5249 (2021).

    Article  CAS  Google Scholar 

  6. Blakemore, D. C. et al. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 10, 383–394 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Roughley, S. D. & Jordan, A. M. The medicinal chemist’s toolbox: an analysis of reactions used in the pursuit of drug candidates. J. Med. Chem. 54, 3451–3479 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Brown, D. G. & Boström, J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? J. Med. Chem. 59, 4443–4458 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Karrouchi, K. et al. Synthesis and pharmacological activities of pyrazole derivatives: a review. Molecules 23, 134 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Alghamdi, S. S., Suliman, R. S., Almutairi, K., Kahtani, K. & Aljatli, D. Imidazole as a promising medicinal scaffold: current status and future direction. Drug Des. Devel. Ther. 15, 3289–3312 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lovering, F., Bikker, J. & Humblet, C. Escape from Flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Lovering, F. Escape from Flatland 2: complexity and promiscuity. MedChemComm 4, 515–519 (2013).

    Article  CAS  Google Scholar 

  13. Foley, D. J. et al. Synthesis and demonstration of the biological relevance of sp3-rich scaffolds distantly related to natural product frameworks. Chem. Eur. J. 23, 15227–15232 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. McMurry, J. Organic Chemistry (Thomson Brooks/Cole, 2012).

  15. Swamy, K. C. K., Kumar, N. N. B., Balaraman, E. & Kumar, K. V. P. P. Mitsunobu and related reactions: advances and applications. Chem. Rev. 109, 2551–2651 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Fletcher, S. The Mitsunobu reaction in the 21st century. Org. Chem. Front. 2, 739–752 (2015).

    Article  CAS  Google Scholar 

  17. Bordwell, F. G. Equilibrium acidities in dimethyl sulfoxide solution. Acc. Chem. Res. 21, 456–463 (1988).

    Article  CAS  Google Scholar 

  18. Huang, A. et al. Regioselective synthesis, NMR, and crystallographic analysis of N1-substituted pyrazoles. J. Org. Chem. 82, 8864–8872 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Iškauskienė, M., Ragaitė, G., Sløk, F. A. & Šačkus, A. Facile synthesis of novel amino acid-like building blocks by N-alkylationof heterocyclic carboxylates with N-Boc-3-iodoazetidine. Mol. Divers. 24, 1235–1251 (2020).

    Article  PubMed  Google Scholar 

  20. Ameziane El Hassani, I., Rouzi, K., Assila, H., Karrouchi, K. & Ansar, M. Recent advances in the synthesis of pyrazole derivatives: a review. Reactions 4, 478–504 (2023).

    Article  CAS  Google Scholar 

  21. Tolomeu, H. V. & Fraga, C. A. M. Imidazole: synthesis, functionalization and physicochemical properties of a privileged structure in medicinal chemistry. Molecules 28, 838 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Krämer, K. The five reactions on every organic chemist’s wish list. Chemistry World https://www.chemistryworld.com/news/the-five-reactions-on-every-organic-chemists-wish-list/3010150.article (2019).

  23. Constable, D. J. C. et al. Key green chemistry research areas—a perspective from pharmaceutical manufacturers. Green Chem. 9, 411–420 (2007).

    Article  CAS  Google Scholar 

  24. Liang, Y., Zhang, X. & MacMillan, D. W. C. Decarboxylative sp3 C–N coupling via dual copper and photoredox catalysis. Nature 559, 83–88 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sheng, T. et al. Electrochemical decarboxylative N-alkylation of heterocycles. Org. Lett. 22, 7594–7598 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jiu, A. Y., Slocumb, H. S., Yeung, C. S., Yang, X.-H. & Dong, V. M. Enantioselective addition of pyrazoles to dienes. Angew. Chem. Int. Ed. 60, 19660–19664 (2021).

    Article  CAS  Google Scholar 

  27. Dale, H. J. A., Hodges, G. R. & Lloyd-Jones, G. C. Taming ambident triazole anions: regioselective ion pairing catalyzes direct N-alkylation with atypical regioselectivity. J. Am. Chem. Soc. 141, 7181–7193 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Chen, S.-J., Golden, D. L., Krska, S. W. & Stahl, S. S. Copper-catalyzed cross-coupling of benzylic C–H bonds and azoles with controlled N-site selectivity. J. Am. Chem. Soc. 143, 14438–14444 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guo, Q., Jiang, Y., Zhu, R., Yang, W. & Hu, P. Electrochemical azo-free Mitsunobu-type reaction. Angew. Chem. Int. Ed. 63, e202402878 (2024).

    Article  CAS  Google Scholar 

  30. Bengel, L. L. et al. Engineered enzymes enable selective N-alkylation of pyrazoles with simple haloalkanes. Angew. Chem. Int. Ed. 60, 5554–5560 (2021).

    Article  CAS  Google Scholar 

  31. Das, M., Zamani, L., Bratcher, C. & Musacchio, P. Z. Azolation of benzylic C–H bonds via photoredox-catalyzed carbocation generation. J. Am. Chem. Soc. 145, 3861–3868 (2023).

    Article  CAS  Google Scholar 

  32. Górski, B., Barthelemy, A.-L., Douglas, J. J., Juliá, F. & Leonori, D. Copper-catalysed amination of alkyl iodides enabled by halogen-atom transfer. Nat. Catal. 4, 623–630 (2021).

    Article  Google Scholar 

  33. Dow, N. W., Cabré, A. & MacMillan, D. W. C. A general N-alkylation platform via copper metallaphotoredox and silyl radicalactivation of alkyl halides. Chem 7, 1827–1842 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen, C., Wang, Z.-J., Lu, H., Zhao, Y. & Shi, Z. Generation of non-stabilized alkyl radicals from thianthrenium salts for C–B and C–C bond formation. Nat. Commun. 12, 4526 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wagen, C. Organic chemistry’s wish list, four years later. Corin Wagen https://corinwagen.github.io/public/blog/20231020_wish_list.html (2023).

  36. Meng, H., Liu, M.-S. & Shu, W. Organothianthrenium salts: synthesis and utilization. Chem. Sci. 13, 13690–13707 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim, M. J., Targos, K., Holst, D. E., Wang, D. J. & Wickens, Z. K. Alkene thianthrenation unlocks diverse cation synthons: recent progress and new opportunities. Angew. Chem. Int. Ed. 63, e202314904 (2024).

    Article  CAS  Google Scholar 

  38. Chen, J., Li, J., Plutschack, M. B., Berger, F. & Ritter, T. Regio- and stereoselective thianthrenation of olefins to access versatile alkenyl electrophiles. Angew. Chem. Int. Ed. 59, 5616–5620 (2020).

    Article  CAS  Google Scholar 

  39. Kaiser, D., Klose, I., Oost, R., Neuhaus, J. & Maulide, N. Bond-forming and -breaking reactions at sulfur(IV): sulfoxides, sulfonium salts, sulfur ylides, and sulfinate salts. Chem. Rev. 119, 8701–8780 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Holst, D. E., Wang, D. J., Kim, M. J., Guzei, I. A. & Wickens, Z. K. Aziridine synthesis by coupling amines and alkenes via an electrogenerated dication. Nature 596, 74–79 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu, M.-S., Du, H.-W., Cui, J.-F. & Shu, W. Intermolecular metal-free cyclopropanation and aziridination of alkenes with XH2 (X = N, C) by thianthrenation. Angew. Chem. Int. Ed. 61, e202209929 (2022).

    Article  CAS  Google Scholar 

  42. Kim, M. J. et al. Diastereoselective synthesis of cyclopropanes from carbon pronucleophiles and alkenes. Angew. Chem. Int. Ed. 62, e202303032 (2023).

    Article  CAS  Google Scholar 

  43. Moon, H., Jung, J., Choi, J.-H. & Chung, W. Stereospecific syn-dihalogenations and regiodivergent syn-interhalogenation of alkenes via vicinal double electrophilic activation strategy. Nat. Commun. 15, 3710 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Juliá, F., Yan, J., Paulus, F. & Ritter, T. Vinyl thianthrenium tetrafluoroborate: a practical and versatile vinylating reagent made from ethylene. J. Am. Chem. Soc. 143, 12992–12998 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liu, M.-S., Du, H.-W., Meng, H., Xie, Y. & Shu, W. Unified metal-free intermolecular Heck-type sulfonylation, cyanation, amination, amidation of alkenes by thianthrenation. Nat. Commun. 15, 529 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Holst, D. E., Dorval, C., Winter, C. K., Guzei, I. A. & Wickens, Z. K. Regiospecific alkene aminofunctionalization via an electrogenerated dielectrophile. J. Am. Chem. Soc. 145, 8299–8307 (2023).

    Article  CAS  Google Scholar 

  47. Breugst, M., Tokuyasu, T. & Mayr, H. Nucleophilic reactivities of imide and amide anions. J. Org. Chem. 75, 5250–5258 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Mahatthananchai, J., Dumas, A. M. & Bode, J. W. Catalytic selective synthesis. Angew. Chem. Int. Ed. 51, 10954–10990 (2012).

    Article  CAS  Google Scholar 

  49. Larina, L. I. in Advances in Heterocyclic Chemistry Vol. 124 (eds. Scriven, E. F. V. & Ramsden, C. A.) 233–321 (Academic Press, 2018).

  50. Horváth, A. Catalysis and regioselectivity in the Michael addition of azoles. Kinetic vs. thermodynamic control. Tetrahedron Lett. 37, 4423–4426 (1996).

    Article  Google Scholar 

  51. Tomas, F. et al. Tautomerism and aromaticity in 1,2,3-triazoles: the case of benzotriazole. J. Am. Chem. Soc. 111, 7348–7353 (1989).

    Article  CAS  Google Scholar 

  52. Ivanova, A. E. et al. Ambident polyfluoroalkyl-substituted pyrazoles in the methylation reactions. J. Fluor. Chem. 195, 47–56 (2017).

    Article  CAS  Google Scholar 

  53. Norman, N. J. et al. Highly selective N-alkylation of pyrazoles: crystal structure evidence for attractive interactions. J. Org. Chem. 87, 10018–10025 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Bhanushali, M. J., Nandurkar, N. S., Bhor, M. D. & Bhanage, B. M. Y(NO3)3·6H2O catalyzed regioselective ring opening of epoxides with aliphatic, aromatic, and heteroaromatic amines. Tetrahedron Lett. 49, 3672–3676 (2008).

    Article  CAS  Google Scholar 

  55. De, P. B., Pradhan, S. & Punniyamurthy, T. Stereoselective copper-catalyzed cross-coupling of aziridines with benzimidazoles via nucleophilic ring opening and C(sp2)–H functionalization. J. Org. Chem. 82, 3183–3191 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Czibula, L., Dobay, L., Papp, E. W., Bagdy, J. N. & Sebok, F. High purity butoconazole nitrate with specified particle size and a process for the preparation thereof. Patent US007625935B2 (2008).

  57. Rotstein, D. M. & Walker, K. A. M. The synthesis and antifungal activity of the enantiomers of butoconazole nitrate. Tetrahedron Asymmetry 4, 1521–1526 (1993).

    Article  CAS  Google Scholar 

  58. Varghese, S. et al. Discovery of potent N-ethylurea pyrazole derivatives as dual inhibitors of Trypanosoma brucei and Trypanosoma cruzi. ACS Med. Chem. Lett. 11, 278–285 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Wendlandt and M. Levin for suggestions and paper proofreading. We thank the Weix, Stahl, Yoon and Schomaker groups for sharing their chemical inventory. B. J. Thompson is acknowledged for his assistance with power supply design and fabrication. T. Drier is acknowledged for electrochemical glassware fabrication. M. Horwitz is acknowledged for initiating the collaboration and suggestions at the beginning of the project. We also acknowledge support and suggestions from all Wickens group members throughout the investigation of this project. This work was financially supported by the Office of the Vice Chancellor for Research and Graduate Education at the University of Wisconsin–Madison with funding from the Wisconsin Alumni Research Foundation and from the NIH (R01 GM149674-01). This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under grant number DGE-1747503 (A.D.M., K.T.). We acknowledge the UW-Madison Department of Chemistry SynCat Center for supporting this work. The Waters UPC2-MS instrument was supported by NIH 1S10OD036302-01, and we thank the UW-Madison Department of Chemistry SynCat Center for assisting with its operation. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. Spectroscopic instrumentation was supported by a generous gift from Paul J. and M. M. Bender, the NSF (CHE-1048642, CHE-1919350) and the NIH (1S10OD020022-1, S10 OD012245).

Author information

Authors and Affiliations

Authors

Contributions

Z.K.W. and C.D. designed the project. D.E.H. conducted preliminary studies. C.D., A.D.M., K.T., S.N.A., D.E.H. and Z.T. performed the experiments and collected the data. M.M. conducted all computational studies. J.B.D. and J.E.G. assisted with high-throughput experimentation. K.M.S. and I.A.G. collected and analysed X-ray diffraction data. All authors analysed the data and contributed to writing the paper.

Corresponding author

Correspondence to Zachary K. Wickens.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

General methods and materials, supplementary data, computational studies, high-throughput experimentation set-up, characterization of N-regioselectivity, substrate preparation and characterization, general experimental procedures, and characterization data for all compounds synthesized in the preparation of this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorval, C., Matthews, A.D., Targos, K. et al. Unlocking azole chemical space via modular and regioselective N-alkylation. Nat. Chem. 17, 1576–1585 (2025). https://doi.org/10.1038/s41557-025-01891-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-025-01891-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing