Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stable single-site organonickel catalyst preferentially hydrogenolyses branched polyolefin C–C bonds

Abstract

Current methods of processing accumulated polyolefin waste typically require harsh conditions, precious metals or high metal loadings to achieve appreciable activities. Here we examined supported, single-site organonickel catalysts for polyolefin upcycling. Chemisorption of Ni(COD)2 (COD, 1,5-cyclooctadiene) onto Brønsted acidic sulfated alumina (AlS) yields a highly electrophilic Ni(I) precatalyst, AlS/Ni(COD)2, which is converted under H2 to the active AlS/NiIIH catalyst. This single-site system exhibits unique hydrogenolysis selectivity that favours cleaving branched polyolefin C–C linkages, enabling the hydrogenolytic separation of polyethylene and isotactic polypropylene (iPP) mixtures. Moreover, AlS/NiIIH remains highly selective and active for hydrogenolysis of iPP admixed with polyvinyl chloride, and the spent catalyst can be repeatedly regenerated by AlEt3 treatment. Experimental mechanistic analysis and density functional theory modelling reveal a turnover-limiting C–C scission pathway featuring β-alkyl transfer and strong olefin binding. These results highlight the potential of nickel-based systems for the selective upcycling of complex plastic waste streams.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Precatalyst chemisorption pathways.
Fig. 2: DRIFTS, XPS and DFT analysis.
Fig. 3: DFT analysis of propane hydrogenolysis catalysed by AlS/NiH.
Fig. 4: Hydrogenolysis with recycled catalyst.

Similar content being viewed by others

Data availability

All relevant data supporting the findings of this study are available in this paper and its Supplementary Information. Synthetic procedures and characterization for the catalysts, computational studies and all copies of NMR, XPS spectra and GPC traces are available in the Supplementary Information. Source data are provided with this paper.

References

  1. Vollmer, I. et al. Beyond mechanical recycling: giving new life to plastic waste. Angew. Chem. Int. Ed. 59, 15402–15423 (2020).

    Article  CAS  Google Scholar 

  2. Jehanno, C. et al. Critical advances and future opportunities in upcycling commodity polymers. Nature 603, 803–814 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Pires Costa, L., Vaz de Miranda, D. M. & Pinto, J. C. Critical evaluation of life cycle assessment analyses of plastic waste pyrolysis. ACS Sustain. Chem. Eng. 10, 3799–3807 (2022).

    Article  CAS  Google Scholar 

  4. Dogu, O. et al. The chemistry of chemical recycling of solid plastic waste via pyrolysis and gasification: state-of-the-art, challenges, and future directions. Prog. Energy Combust. Sci. 84, 100901 (2021).

    Article  Google Scholar 

  5. Rahimi, A. & García, J. M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 1, 0046 (2017).

    Article  Google Scholar 

  6. Solis, M. & Silveira, S. Technologies for chemical recycling of household plastics—a technical review and TRL assessment. Waste Manage. 105, 128–138 (2020).

    Article  CAS  Google Scholar 

  7. Qureshi, M. S. et al. Pyrolysis of plastic waste: opportunities and challenges. J. Anal. Appl. Pyrolysis 152, 104804 (2020).

    Article  CAS  Google Scholar 

  8. Miao, Y. et al. Photothermal recycling of waste polyolefin plastics into liquid fuels with high selectivity under solvent-free conditions. Nat. Commun. 14, 4242 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, X.-Y., Gao, Y. & Tang, Y. Sustainable developments in polyolefin chemistry: progress, challenges, and outlook. Prog. Polym. Sci. 143, 101713 (2023).

    Article  CAS  Google Scholar 

  10. Jubinville, D., Esmizadeh, E., Saikrishnan, S., Tzoganakis, C. & Mekonnen, T. A comprehensive review of global production and recycling methods of polyolefin (PO) based products and their post-recycling applications. Sustain. Mater. Technol. 25, e00188 (2020).

    CAS  Google Scholar 

  11. Zhang, F. et al. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization. Science 370, 437–441 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Chen, L. et al. Disordered, sub-nanometer Ru structures on CeO2 are highly efficient and selective catalysts in polymer upcycling by hydrogenolysis. ACS Catal. 12, 4618–4627 (2022).

    Article  CAS  Google Scholar 

  13. Rorrer, J. E., Troyano-Valls, C., Beckham, G. T. & Román-Leshkov, Y. Hydrogenolysis of polypropylene and mixed polyolefin plastic waste over Ru/C to produce liquid alkanes. ACS Sustain. Chem. Eng. 9, 11661–11666 (2021).

    Article  CAS  Google Scholar 

  14. Celik, G. et al. Upcycling single-use polyethylene into high-quality liquid products. ACS Cent. Sci. 5, 1795–1803 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tennakoon, A. et al. Catalytic upcycling of high-density polyethylene via a processive mechanism. Nat. Catal. 3, 893–901 (2020).

    Article  CAS  Google Scholar 

  16. Rorrer, J. E., Beckham, G. T. & Román-Leshkov, Y. Conversion of polyolefin waste to liquid alkanes with Ru-based catalysts under mild conditions. JACS Au 1, 8–12 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Conk, R. J. et al. Catalytic deconstruction of waste polyethylene with ethylene to form propylene. Science 377, 1561–1566 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Goldman, A. S. et al. Catalytic alkane metathesis by tandem alkane dehydrogenation–olefin metathesis. Science 312, 257–261 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Rorrer, J. E. et al. Role of bifunctional Ru/acid catalysts in the selective hydrocracking of polyethylene and polypropylene waste to liquid hydrocarbons. ACS Catal. 12, 13969–13979 (2022).

    Article  CAS  Google Scholar 

  20. Kots, P. A. et al. Polypropylene plastic waste conversion to lubricants over Ru/TiO2 catalysts. ACS Catal. 11, 8104–8115 (2021).

    Article  CAS  Google Scholar 

  21. Musa, A., Jaseer, E. A., Barman, S. & Garcia, N. Review on catalytic depolymerization of polyolefin waste by hydrogenolysis: state-of-the-art and outlook. Energy Fuels 38, 1676–1691 (2024).

    Article  CAS  Google Scholar 

  22. Jaydev, S. D. et al. Consumer grade polyethylene recycling via hydrogenolysis on ultrafine supported ruthenium nanoparticles. Angew. Chem. Int. Ed. 63, e202317526 (2024).

    Article  CAS  Google Scholar 

  23. Hu, P. et al. Stable interfacial ruthenium species for highly efficient polyolefin upcycling. J. Am. Chem. Soc. 146, 7076–7087 (2024).

    Article  CAS  PubMed  Google Scholar 

  24. Sun, C. et al. Pt enhanced C–H bond activation for efficient and low-methane-selectivity hydrogenolysis of polyethylene over alloyed RuPt/ZrO2. Appl. Catal. B 353, 124046 (2024).

    Article  CAS  Google Scholar 

  25. Dufaud, V. & Basset, J. M. Catalytic hydrogenolysis at low temperature and pressure of polyethylene and polypropylene to diesels or lower alkanes by a zirconium hydride supported on silica–alumina: a step toward polyolefin degradation by the microscopic reverse of Ziegler–Natta polymerization. Angew. Chem. Int. Ed. 37, 806–810 (1998).

    Article  CAS  Google Scholar 

  26. Chen, S. et al. Ultrasmall amorphous zirconia nanoparticles catalyse polyolefin hydrogenolysis. Nat. Catal. 6, 161–173 (2023).

    Article  CAS  Google Scholar 

  27. Mason, A. H. et al. Rapid atom-efficient polyolefin plastics hydrogenolysis mediated by a well-defined single-site electrophilic/cationic organo-zirconium catalyst. Nat. Commun. 13, 7187 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Edenfield, W. C. et al. Rapid polyolefin plastic hydrogenolysis mediated by single-site heterogeneous electrophilic/cationic organo-group IV catalysts. ACS Catal. 14, 554–565 (2024).

    Article  CAS  Google Scholar 

  29. Lai, Q. et al. Rapid polyolefin hydrogenolysis by a single-site organo-tantalum catalyst on a super-acidic support: structure and mechanism. Angew. Chem. Int. Ed. 62, e202312546 (2023).

    Article  CAS  Google Scholar 

  30. Gao, J., Zhu, L. & Conley, M. P. Cationic tantalum hydrides catalyze hydrogenolysis and alkane metathesis reactions of paraffins and polyethylene. J. Am. Chem. Soc. 145, 4964–4968 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Mason, A. H., Motta, A., Kratish, Y. & Marks, T. J. Demystifying group-4 polyolefin hydrogenolysis catalysis: gaseous propane hydrogenolysis mechanism over the same catalysts. Proc. Natl Acad. Sci. USA 121, e2406133121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vance, B. C., Kots, P. A., Wang, C., Granite, J. E. & Vlachos, D. G. Ni/SiO2 catalysts for polyolefin deconstruction via the divergent hydrogenolysis mechanism. Appl. Catal. B 322, 122138 (2023).

    Article  CAS  Google Scholar 

  33. Zhao, Z. et al. Catalytic hydrogenolysis of plastic to liquid hydrocarbons over a nickel-based catalyst. Environ. Pollut. 313, 120154 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Chu, M. et al. Layered double hydroxide derivatives for polyolefin upcycling. J. Am. Chem. Soc. 146, 10655–10665 (2024).

    Article  CAS  PubMed  Google Scholar 

  35. Wang, M. et al. Complete hydrogenolysis of mixed plastic wastes. Nat. Chem. Eng. 1, 376–384 (2024).

    Article  Google Scholar 

  36. Wilke, G. & Herrmann, G. Stabilized dialkylnickel compounds. Angew. Chem. Int. Ed. 5, 581–582 (1966).

    Article  CAS  Google Scholar 

  37. Wilke G. et al. Cyclooligomerisation von Butadien und Übergangsmetall-π-Komplexe. Angew. Chem. 75, 10–20 (1963).

  38. Wu, M. & Hercules, D. M. Studies of supported nickel catalysts by x-ray photoelectron and ion scattering spectroscopies. J. Phys. Chem. 83, 2003–2008 (1979).

    Article  CAS  Google Scholar 

  39. Biesinger, M. C., Lau, L. W. M., Gerson, A. R. & Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 257, 887–898 (2010).

    Article  CAS  Google Scholar 

  40. Grosvenor, A. P., Biesinger, M. C., Smart, R. S. C. & McIntyre, N. S. New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci. 600, 1771–1779 (2006).

    Article  CAS  Google Scholar 

  41. Klet, R. C. et al. Evidence for redox mechanisms in organometallic chemisorption and reactivity on sulfated metal oxides. J. Am. Chem. Soc. 140, 6308–6316 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Garribba, E. & Micera, G. The determination of the geometry of Cu(II) complexes: an EPR spectroscopy experiment. J. Chem. Educ. 83, 1229 (2006).

    Article  CAS  Google Scholar 

  43. Bender, G. et al. Infrared and EPR spectroscopic characterization of a Ni(I) species formed by photolysis of a catalytically competent Ni(I)–CO intermediate in the acetyl-CoA synthase reaction. Biochem. 49, 7516–7523 (2010).

  44. Schwab, M. M. et al. Ni(cod)2][Al(ORF)4], a source for naked nickel(I) chemistry. Angew. Chem. Int. Ed. 54, 14706–14709 (2015).

    Article  CAS  Google Scholar 

  45. Eaton, G. R., Eaton, S., Barr, D. P. & Weber, R. T. Quantitative EPR (Springer, 2010).

  46. Eberhardt, N. A. & Guan, H. Nickel hydride complexes. Chem. Rev. 116, 8373–8426 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Wang, Q., Duan, J. D., Goetjen, T., Hupp, J. & Notestein, J. Bimetallic NiCu catalysts supported on a metal–organic framework for non-oxidative ethanol dehydrogenation. J. Catal. 422, 86–98 (2023).

    Article  CAS  Google Scholar 

  48. Morgan, D. J. XPS insights: sample degradation in X-ray photoelectron spectroscopy. Surf. Interface Anal. 55, 331–335 (2023).

    Article  CAS  Google Scholar 

  49. Krzystek, J. et al. EPR spectra from ‘EPR-silent’ species: high-frequency and high-field EPR spectroscopy of pseudotetrahedral complexes of nickel(II). Inorg. Chem. 41, 4478–4487 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Albrahim, M. et al. Reduction and agglomeration of supported metal clusters induced by high-flux X-ray absorption spectroscopy measurements. J. Phys. Chem. C 125, 11048–11057 (2021).

    Article  CAS  Google Scholar 

  51. Sehested, J., Gelten, J. A. P. & Helveg, S. Sintering of nickel catalysts: effects of time, atmosphere, temperature, nickel-carrier interactions, and dopants. Appl. Catal. A 309, 237–246 (2006).

    Article  CAS  Google Scholar 

  52. Tomer, A. et al. Enhanced production and control of liquid alkanes in the hydrogenolysis of polypropylene over shaped Ru/CeO2 catalysts. Appl. Catal. A 666, 119431 (2023).

    Article  CAS  Google Scholar 

  53. Garin, F., Hilaire, L. & Maire, G. in Studies in Surface Science and Catalysis Vol. 27 (ed. Cerveny, L.) 145–199 (Elsevier, 1986).

  54. Lu, L., Li, W., Cheng, Y. & Liu, M. Chemical recycling technologies for PVC waste and PVC-containing plastic waste: a review. Waste Manage. 166, 245–258 (2023).

    Article  CAS  Google Scholar 

  55. Chen, L. et al. Effect of reaction conditions on the hydrogenolysis of polypropylene and polyethylene into gas and liquid alkanes. React. Chem. Engin. 7, 844–854 (2022).

    Article  CAS  Google Scholar 

  56. Yu, J., Sun, L., Ma, C., Qiao, Y. & Yao, H. Thermal degradation of PVC: a review. Waste Manage. 48, 300–314 (2016).

    Article  CAS  Google Scholar 

  57. Drago, R. S., Petrosius, S. C. & Kaufman, P. B. Alkylation, isomerization and cracking activity of a novel solid acid, AlCl2(SG)n. J. Mol. Catal. 89, 317–327 (1994).

    Article  CAS  Google Scholar 

  58. Luo, Y.-R. in Comprehensive Handbook of Chemical Bond Energies Chap. 4, 148–153 (CRC Press, 2007).

Download references

Acknowledgements

We thank the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences under award number DOE DE-SC0024448, and The Dow Chemical Company for financial support of this work (T.J.M., Q.L., W.C.E., A.A., catalyst synthesis and characterization). X.Z. thanks the Center for Innovative and Strategic Transformation of Alkane Resources (CISTAR) for support under NSF award number EEC-1647722 (XPS). A part of this work (T.K., solid-state NMR) was supported by the US DOE, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division. The research was performed at the Ames National Laboratory, which is operated for the US DOE by Iowa State University under contract number DE-AC02-07CH11358. This work made use of IMSERC (RRID SCR_017874) facilities at Northwestern University, which received support from Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSFECCS-2025633), the International Institute of Nanotechnology and Northwestern University. This work made use of the Northwestern University QBIC supported by NASA Ames Research Center grant NNA04CC36G. This work made use of the REACT Facility of Northwestern University’s Center for Catalysis and Surface Science supported by grant DE-SC0001329 from the DOE. This work was supported by the US DOE, Office of Science, Office of Basic Energy Sciences, under award number DE-FG02-99ER14999 (M.R.W., EPR spectroscopy). This research used resources at the 8-ID beamline of the National Synchrotron Light Source II, a US DOE Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under contract number DE-SC0012704. This research was supported in part by computational resources and staff provided by the Quest High-Performance Computing Facility at NU, which is jointly supported by the Office of the Provost, the Office for Research and NU Information Technology. We also thank B. Tumanskii for informative and helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Q.L., Y.K. and T.J.M. designed the study. Q.L., Y.K. and T.J.M. wrote the paper with contributions from all coauthors. Q.L. performed the catalyst preparation, characterization and catalytic tests. Y.K. carried out the theoretical calculations. X.Z. performed XPS measurements and analysis. S.J. and J.T.M. performed XAS measurement and analysis. M.D.K. performed EPR measurements and analysis. Y.L. performed the HAADF-STEM measurements. S.A. performed the DRIFTS measurements and analysis. T.K. performed the solid-state NMR experiments and analysis. X.Z. helped to set up the continuous-flow BenchCat reactor. Q.L., X.Z., S.J., M.D.K., S.A., A.A., M.R.W., V.D., Y.W., W.C.E., J.T.M., Y.K. and T.J.M. analysed the data and revised the paper.

Corresponding authors

Correspondence to Jeffery T. Miller, Yosi Kratish or Tobin J. Marks.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 potential cleaving point in PECO and analysis of DCM extract from hydrogenolysis of polyolefins or polyolefin mixtures.

a, GC–MS chromatogram of the DCM extract of PECO hydrogenolysis reactions run under identical conditions with the indicated catalysts; b, Potential C-C cleavage points in PECO hydrogenolysis. c, GPC analysis of the DCM extract of i-PP hydrogenolysis. d, GPC analysis of the DCM extract of a-PP hydrogenolysis. e, GPC analysis of DCM extract of hydrogenolysis of post-consumer i-PP and PE mixtures. f, GPC analysis of the solid fraction of hydrogenolysis of post-consumer i-PP and PE mixtures.

Source data

Extended Data Fig. 2 GPC analysis of DCM extract of i-PP hydrogenolysis in the presence of PVC.

a, GPC analysis of DCM extract of i-PP hydrogenolysis in the presence of PVC with constant total polymer mass (~500 mg). b, GPC analysis of DCM extract of i-PP hydrogenolysis in the presence of varied PVC content (~500 mg i-PP loading).

Source data

Extended Data Fig. 3 GPC analysis of DCM extract of i-PP hydrogenolysis under other conditions.

a, GPC analysis of DCM extract of i-PP hydrogenolysis in the presence of 10% PTFE. b, GPC analysis of DCM extract of i-PP hydrogenolysis with PVC pretreated AlS/Ni(COD)2.

Source data

Extended Data Table 1 AlS/Ni(COD)2 (1)-mediated stepwise hydrogenolysis data for mixtures of post-consumer i-PP and linear PE polymer
Extended Data Table 2 Catalytic AlS/Ni(COD)2 (1) i-PP hydrogenolysis data in the presence of PVC
Extended Data Table 3 AlS/Ni(COD)2 (1)-mediated i-PP hydrogenolysis data under various conditions

Supplementary information

Supplementary Information

Supplementary procedures, physical methods, Figs. 1–36 and Tables 1–13.

Supplementary Data 1

DFT model construction and Cartesian coordinates.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Computed energy values.

Source Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, Q., Zhang, X., Jiang, S. et al. Stable single-site organonickel catalyst preferentially hydrogenolyses branched polyolefin C–C bonds. Nat. Chem. 17, 1488–1496 (2025). https://doi.org/10.1038/s41557-025-01892-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-025-01892-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing