Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Comparative genomics provides insights into chromosomal evolution and immunological adaptation in horseshoe bats

Abstract

Horseshoe bats are natural hosts of zoonotic viruses, yet the genetic basis of their antiviral immunity is poorly understood. Here we generated two new chromosomal-level genome assemblies for horseshoe bat species (Rhinolophus) and three close relatives, and show that, during their diversification, horseshoe bats underwent extensive chromosomal rearrangements and gene expansions linked to segmental duplications. These expansions have generated new adaptive variations in type I interferons and the interferon-stimulated gene ANXA2R, which potentially enhance antiviral states, as suggested by our functional assays. Genome-wide selection screens, including of candidate introgressed regions, uncover numerous putative molecular adaptations linked to immunity, including in viral receptors. By expanding taxon coverage to ten horseshoe bat species, we identify new variants of the SARS-CoV-2 receptor ACE2, and report convergent functionally important residues that could explain wider patterns of susceptibility across mammals. We conclude that horseshoe bats have numerous signatures of adaptation, including some potentially related to immune response to viruses, in genomic regions with diverse and multiscale mutational changes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genome assembly quality and phylogenetic relationships in the Rhinolophidae.
Fig. 2: Chromosomal evolution in the Rhinolophidae.
Fig. 3: Expansion of the ANXA2R gene.
Fig. 4: Diversity of type I IFN genes.
Fig. 5: Evaluation of ACE2 critical sites determining SARS-CoV-2 binding and entry among species and individuals.
Fig. 6: Putative genetic introgression in Rhinolophidae.

Similar content being viewed by others

Data availability

New genome sequence data for the five bats are deposited at the Genome Sequence Archive in National Genomics Data Center (https://ngdc.cncb.ac.cn) under accession code CRA018832. Genome assemblies are deposited at the NGDC GenBank under accessions GWHFDMV00000000.1 (https://ngdc.cncb.ac.cn/gwh/Assembly/86071/show, R. sinicus), GWHFDMW00000000.1 (https://ngdc.cncb.ac.cn/gwh/Assembly/86072/show, R. pearsonii), GWHFDMX00000000.1 (https://ngdc.cncb.ac.cn/gwh/Assembly/86073/show, H. armiger), GWHFDMY00000000.1 (https://ngdc.cncb.ac.cn/gwh/Assembly/86073/show, H. pratti) and GWHFDMZ00000000.1 (https://ngdc.cncb.ac.cn/gwh/Assembly/86075/show, M. lyra). RNA-seq data of RfKT cells can be accessed at the NGDC (accession number: PRJCA023723). SARS-CoV-2 S protein sequence was obtained from GenBank (accession number: MN908947). Human ACE2 protein sequence was obtained from GenBank (accession number: NP_001358344.1). The data files used for the population genomics analyses, gene family analysis and PAML analysis are available via Figshare at https://doi.org/10.6084/m9.figshare.27612597 (ref. 124).

Code availability

The code and pipelines used for the analyses are available via Zenodo at https://doi.org/10.5281/zenodo.13690583 (ref. 125) and GitHub (https://github.com/SLbio/Comparative-genomics-of-horseshoe-bats).

References

  1. Morales, A. E. et al. Bat genomes illuminate adaptations to viral tolerance and disease resistance. Nature https://doi.org/10.1038/s41586-024-08471-0 (2025).

  2. Anthony, S. J. et al. Global patterns in coronavirus diversity. Virus Evol. 3, vex012 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hutson, A., Rossiter, S., Csorba, G. & Burgin, C. in Handbook of the Mammals of the World: Bats (eds Wilson, D. E. & Mittermeier, R. A.) 260–332 (Lynx, 2019).

  4. Foley, N. M. et al. How and why overcome the impediments to resolution: lessons from rhinolophid and hipposiderid bats. Mol. Biol. Evol. 32, 313–333 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Hu, B. et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 13, e1006698 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ge, X. Y. et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503, 535–538 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Temmam, S. et al. Bat coronaviruses related to SARS-CoV-2 and infectious for human cells. Nature 604, 330–336 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lau, S. K. et al. Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events. J. Virol. 84, 2808–2819 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu, X. et al. Analogous comparison unravels heightened antiviral defense and boosted viral infection upon immunosuppression in bat organoids. Signal Transduct. Target. Ther. 7, 392 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xie, J. et al. Dampened STING-dependent interferon activation in bats. Cell Host Microbe 23, 297–301 e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ahn, M., Cui, J., Irving, A. T. & Wang, L. F. Unique loss of the PYHIN gene family in bats amongst mammals: implications for inflammasome sensing. Sci. Rep. 6, 21722 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moreno Santillan, D. D. et al. Large-scale genome sampling reveals unique immunity and metabolic adaptations in bats. Mol. Ecol. 30, 6449–6467 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Jebb, D. et al. Six reference-quality genomes reveal evolution of bat adaptations. Nature 583, 578–584 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Woelk, C. H., Frost, S. D., Richman, D. D., Higley, P. E. & Kosakovsky Pond, S. L. Evolution of the interferon alpha gene family in eutherian mammals. Gene 397, 38–50 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Walker, A. M. & Roberts, R. M. Characterization of the bovine type I IFN locus: rearrangements, expansions, and novel subfamilies. BMC Genomics 10, 187 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mao, X. et al. Karyotype evolution in Rhinolophus bats (Rhinolophidae, Chiroptera) illuminated by cross-species chromosome painting and G-banding comparison. Chromosome Res. 15, 835–848 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Tian, S. et al. Comparative analyses of bat genomes identify distinct evolution of immunity in Old World fruit bats. Sci. Adv. 9, eadd0141 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, C. et al. High-quality genome of a modern soybean cultivar and resequencing of 547 accessions provide insights into the role of structural variation. Nat. Genet. 56, 2247–2258 (2024).

    Article  CAS  PubMed  Google Scholar 

  20. Osmanski, A. B. et al. Insights into mammalian TE diversity through the curation of 248 genome assemblies. Science 380, eabn1430 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Paulat, N. S. et al. Chiropterans are a hotspot for horizontal transfer of DNA transposons in Mammalia. Mol. Biol. Evol. 40, msad092 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. She, X., Cheng, Z., Zollner, S., Church, D. M. & Eichler, E. E. Mouse segmental duplication and copy number variation. Nat. Genet. 40, 909–914 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Teeling, E. C. et al. A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307, 580–584 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Lavery, T. H., Leung, L. K. P. & Seddon, J. M. Molecular phylogeny of hipposiderid bats (Chiroptera: Hipposideridae) from Solomon Islands and Cape York Peninsula, Australia. Zool. Scr. 43, 429–442 (2014).

    Article  Google Scholar 

  26. Hao, X., Lu, Q. & Zhao, H. A molecular phylogeny for all 21 families within Chiroptera (bats). Integr. Zool. 19, 989–998 (2023).

    Article  PubMed  Google Scholar 

  27. Dong, D. et al. The genomes of two bat species with long constant frequency echolocation calls. Mol. Biol. Evol. 34, 20–34 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Vilella, A. J. et al. EnsemblCompara GeneTrees: complete, duplication-aware phylogenetic trees in vertebrates. Genome Res. 19, 327–335 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Samonte, R. V. & Eichler, E. E. Segmental duplications and the evolution of the primate genome. Nat. Rev. Genet. 3, 65–72 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Kim, J. et al. Reconstruction and evolutionary history of eutherian chromosomes. Proc. Natl Acad. Sci. USA 114, E5379–E5388 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ross, M. T. et al. The DNA sequence of the human X chromosome. Nature 434, 325–337 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bellott, D. W. & Page, D. C. Reconstructing the evolution of vertebrate sex chromosomes. Cold Spring Harb. Symp. Quant. Biol. 74, 345–353 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Skinner, B. M. et al. The pig X and Y chromosomes: structure, sequence, and evolution. Genome Res. 26, 130–139 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu, S. et al. Extensive genomic rearrangements mediated by repetitive sequences in plastomes of Medicago and its relatives. BMC Plant Biol. 21, 421 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ma, J. et al. Reconstructing contiguous regions of an ancestral genome. Genome Res. 16, 1557–1565 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou, X. et al. Whole-genome sequencing of the snub-nosed monkey provides insights into folivory and evolutionary history. Nat. Genet. 46, 1303–1310 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Fan, H. et al. Chromosome-level genome assembly for giant panda provides novel insights into Carnivora chromosome evolution. Genome Biol. 20, 267 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ao, L. et al. Karyotype relationships of six bat species (Chiroptera, Vespertilionidae) from China revealed by chromosome painting and G-banding comparison. Cytogenet. Genome Res. 115, 145–153 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Sotero-Caio, C. G., Baker, R. J. & Volleth, M. Chromosomal evolution in Chiroptera. Genes (Basel) 8, 272 (2017).

    Article  PubMed  Google Scholar 

  40. De Bie, T., Cristianini, N., Demuth, J. P. & Hahn, M. W. CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22, 1269–1271 (2006).

    Article  PubMed  Google Scholar 

  41. Phillips, A. M. et al. Host proteostasis modulates influenza evolution. eLife 6, e28652 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Reyes-Del Valle, J., Chavez-Salinas, S., Medina, F. & Del Angel, R. M. Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J. Virol. 79, 4557–4567 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Abeler-Dorner, L., Swamy, M., Williams, G., Hayday, A. C. & Bas, A. Butyrophilins: an emerging family of immune regulators. Trends Immunol. 33, 34–41 (2012).

    Article  PubMed  Google Scholar 

  44. Hubel, P. et al. A protein-interaction network of interferon-stimulated genes extends the innate immune system landscape. Nat. Immunol. 20, 493–502 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Ma, Y. et al. Annexin A2 (ANXA2) interacts with nonstructural protein 1 and promotes the replication of highly pathogenic H5N1 avian influenza virus. BMC Microbiol. 17, 191 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chen, K., Durand, D. & Farach-Colton, M. NOTUNG: a program for dating gene duplications and optimizing gene family trees. J. Comput. Biol. 7, 429–447 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Andreev, D. E. et al. Non-AUG translation initiation in mammals. Genome Biol. 23, 111 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xiong, Y. et al. Annexin II receptor induces apoptosis independent of Annexin II. Apoptosis 18, 925–939 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Zuniga, M. et al. Autoimmunity to annexin A2 predicts mortality among hospitalised COVID-19 patients. Eur. Respir. J. 58, 2100918 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ju, X. et al. A novel cell culture system modeling the SARS-CoV-2 life cycle. PLoS Pathog. 17, e1009439 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Das, A. T., Tenenbaum, L. & Berkhout, B. Tet-On systems for doxycycline-inducible gene expression. Curr. Gene Ther. 16, 156–167 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Secombes, C. J. & Zou, J. Evolution of interferons and interferon receptors. Front. Immunol. 8, 209 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Whaley, A. E., Meka, C. S., Harbison, L. A., Hunt, J. S. & Imakawa, K. Identification and cellular localization of unique interferon mRNA from human placenta. J. Biol. Chem. 269, 10864–10868 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. Pavlovich, S. S. et al. The Egyptian Rousette genome reveals unexpected features of bat antiviral immunity. Cell 173, 1098–1110 e18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang, Z. & Rannala, B. Molecular phylogenetics: principles and practice. Nat. Rev. Genet. 13, 303–314 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Geng, R. et al. Unconventional IFNω-like genes dominate the Type I IFN locus and the constitutive antiviral responses in bats. J. Immunol. 213, 204–213 (2024).

    Article  CAS  PubMed  Google Scholar 

  57. Kopitar-Jerala, N. The role of interferons in inflammation and inflammasome activation. Front. Immunol. 8, 873 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gonzalez-Navajas, J. M., Lee, J., David, M. & Raz, E. Immunomodulatory functions of type I interferons. Nat. Rev. Immunol. 12, 125–135 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Banerjee, A. et al. Novel insights into immune systems of bats. Front. Immunol. 11, 26 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Scheben, A. et al. Long-read sequencing reveals rapid evolution of immunity- and cancer-related genes in bats. Genome Biol. Evol. 15, evad148 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sang, Y., Rowland, R. R., Hesse, R. A. & Blecha, F. Differential expression and activity of the porcine type I interferon family. Physiol. Genomics 42, 248–258 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Xu, L., Yang, L. & Liu, W. Distinct evolution process among type I interferon in mammals. Protein Cell 4, 383–392 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhao, X. et al. Cloning and characterization of porcine interferon-delta-related genes identified by genomic database screening. J. Interferon Cytokine Res. 32, 378–385 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Roberts, R. M., Liu, L., Guo, Q., Leaman, D. & Bixby, J. The evolution of the type I interferons1. J. Interferon Cytokine Res. 18, 805–816 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Thomas, C. et al. Structural linkage between ligand discrimination and receptor activation by type I interferons. Cell 146, 621–632 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Ricklin, D., Hajishengallis, G., Yang, K. & Lambris, J. D. Complement: a key system for immune surveillance and homeostasis. Nat. Immunol. 11, 785–797 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Guo, R. F. & Ward, P. A. Role of C5a in inflammatory responses. Annu. Rev. Immunol. 23, 821–852 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Jiang, Y. et al. MERS-CoV infection causes brain damage in human DPP4-transgenic mice through complement-mediated inflammation. J. Gen. Virol. 102, 001667 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jiang, Y. et al. Complement receptor C5aR1 inhibition reduces pyroptosis in hDPP4-transgenic mice infected with MERS-CoV. Viruses 11, 39 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Carvelli, J. et al. Association of COVID-19 inflammation with activation of the C5a–C5aR1 axis. Nature 588, 146–150 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Monk, P. N., Barker, M. D., Partridge, L. J. & Pease, J. E. Mutation of glutamate 199 of the human C5a receptor defines a binding site for ligand distinct from the receptor N terminus. J. Biol. Chem. 270, 16625–16629 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Feng, Y. et al. Mechanism of activation and biased signaling in complement receptor C5aR1. Cell Res. 33, 312–324 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bonaparte, M. I. et al. Ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virus. Proc. Natl Acad. Sci. USA 102, 10652–10657 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li, W. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450–454 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280 e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Thoulouze, M. I. et al. The neural cell adhesion molecule is a receptor for rabies virus. J. Virol. 72, 7181–7190 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhou, D. et al. Unexpected mode of engagement between enterovirus 71 and its receptor SCARB2. Nat. Microbiol. 4, 414–419 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Chen, P. et al. Molecular determinants of enterovirus 71 viral entry: cleft around GLN-172 on VP1 protein interacts with variable region on scavenge receptor B 2. J. Biol. Chem. 287, 6406–6420 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Frank, H. K., Enard, D. & Boyd, S. D. Exceptional diversity and selection pressure on coronavirus host receptors in bats compared to other mammals. Proc. Biol. Sci. 289, 20220193 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Damas, J. et al. Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proc. Natl Acad. Sci. USA 117, 22311–22322 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu, K. et al. Cross-species recognition of SARS-CoV-2 to bat ACE2. Proc. Natl Acad. Sci. USA 118, e2020216118 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Guo, H. et al. Evolutionary arms race between virus and host drives genetic diversity in bat severe acute respiratory syndrome-related coronavirus spike genes. J. Virol. 94, e00902-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Li, P. et al. The Rhinolophus affinis bat ACE2 and multiple animal orthologs are functional receptors for bat coronavirus RaTG13 and SARS-CoV-2. Sci. Bull. (Beijing) 66, 1215–1227 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Zhang, H. L. et al. Evaluating angiotensin-converting enzyme 2-mediated SARS-CoV-2 entry across species. J. Biol. Chem. 296, 100435 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li, P. et al. Effect of polymorphism in Rhinolophus affinis ACE2 on entry of SARS-CoV-2 related bat coronaviruses. PLoS Pathog. 19, e1011116 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sams, A. J. et al. Adaptively introgressed Neandertal haplotype at the OAS locus functionally impacts innate immune responses in humans. Genome Biol. 17, 246 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Garcia-Erill, G. et al. Warthog genomes resolve an evolutionary conundrum and reveal introgression of disease resistance genes. Mol. Biol. Evol. 39, msac134 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Howard-McCombe, J. et al. Genetic swamping of the critically endangered Scottish wildcat was recent and accelerated by disease. Curr. Biol. 33, 4761–4769 e5 (2023).

    Article  CAS  PubMed  Google Scholar 

  90. Foley, N. M. et al. Karyotypic stasis and swarming influenced the evolution of viral tolerance in a species-rich bat radiation. Cell Genom. 4, 100482 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Prufer, K. et al. FUNC: a package for detecting significant associations between gene sets and ontological annotations. BMC Bioinformatics 8, 41 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Marcais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hu, J., Fan, J., Sun, Z. & Liu, S. NextPolish: a fast and efficient genome polishing tool for long-read assembly. Bioinformatics 36, 2253–2255 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Zhang, X., Zhang, S., Zhao, Q., Ming, R. & Tang, H. Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data. Nat. Plants 5, 833–845 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. Smit, A., Hubley, R. & Green, P. RepeatMasker Open-4.0. 2013–2015 (2015).

  98. Bao, W., Kojima, K. K. & Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 6, 11 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, W265–W268 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Price, A. L., Jones, N. C. & Pevzner, P. A. De novo identification of repeat families in large genomes. Bioinformatics 21, i351–i358 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Edgar, R. C. & Myers, E. W. PILER: identification and classification of genomic repeats. Bioinformatics 21, i152–i158 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Smit, A. & Hubley, R. R. RepeatMasker Open-1.0 (2008).

  103. Bergman, C. M. & Quesneville, H. Discovering and detecting transposable elements in genome sequences. Brief Bioinform. 8, 382–392 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Harris, R. S. Improved pairwise alignmnet of genomic DNA. PSU https://www.bx.psu.edu/~rsharris/lastz/README.lastz-1.04.15.html (2007).

  106. Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Talavera, G. & Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564–577 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Veidenberg, A., Medlar, A. & Loytynoja, A. Wasabi: an integrated platform for evolutionary sequence analysis and data visualization. Mol. Biol. Evol. 33, 1126–1130 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Posada, D. & Crandall, K. A. MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817–818 (1998).

    Article  CAS  PubMed  Google Scholar 

  110. Benton, M. J. & Donoghue, P. C. Paleontological evidence to date the tree of life. Mol. Biol. Evol. 24, 26–53 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 1812–1819 (2017).

    Article  CAS  PubMed  Google Scholar 

  112. Kolberg, L. et al. g:Profiler-interoperable web service for functional enrichment analysis and gene identifier mapping (2023 update). Nucleic Acids Res. 51, W207–W212 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mount, D. W. Using the basic local alignment search tool (BLAST). CSH Protoc. 2007, pdb.top.17 (2007).

    Google Scholar 

  114. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bielawski, J. P. & Yang, Z. A maximum likelihood method for detecting functional divergence at individual codon sites, with application to gene family evolution. J. Mol. Evol. 59, 121–132 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Weadick, C. J. & Chang, B. S. An improved likelihood ratio test for detecting site-specific functional divergence among clades of protein-coding genes. Mol. Biol. Evol. 29, 1297–1300 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Putri, G. H., Anders, S., Pyl, P. T., Pimanda, J. E. & Zanini, F. Analysing high-throughput sequencing data in Python with HTSeq 2.0. Bioinformatics 38, 2943–2945 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Nie, J. et al. Quantification of SARS-CoV-2 neutralizing antibody by a pseudotyped virus-based assay. Nat. Protoc. 15, 3699–3715 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Busing, F. M., Meijer, E. & Leeden, R. V. D. Delete-m jackknife for unequal m. Stat. Comput. 9, 3–8 (1999).

    Article  Google Scholar 

  122. Martin, S. H., Davey, J. W. & Jiggins, C. D. Evaluating the use of ABBA-BABA statistics to locate introgressed loci. Mol. Biol. Evol. 32, 244–257 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Martin, S. General tools for genomic analyses. GitHub https://github.com/simonhmartin/genomics_general (2019).

  124. Tian, S. Comparative-genomics-of-horseshoe-bats. figshare https://doi.org/10.6084/m9.figshare.27612597 (2024).

  125. Tian, S. Comparative genomics of horseshoe bats. Zenodo https://doi.org/10.5281/zenodo.13690582 (2024).

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (grant no. 32270436), National Key Research and Development Program of China (grant no. 2021YFF0702004), R&D Program of Guangzhou National Laboratory (grant no. SRPG22-001), Fundamental Research Funds for the Central Universities (grant no. 2042022dx0003) and Natural Science Foundation of Hubei Province (grant no. 2023AFA015) to H.Z. S.T. was supported in part by the National Natural Science Foundation of China (grant no. 32471689), the Beijing Nova Program (grant nos Z211100002121022 and 20230484446) and the Open Fund of Key Laboratory of Biodiversity and Environment on the Qinghai-Tibet Plateau, Ministry of Education (grant no. KLBE2024009). L.Z. was supported in part by the Guangdong Provincial Science and Technology Program (grant no. 2021B1212050021).

Author information

Authors and Affiliations

Authors

Contributions

H.Z. conceived and designed the research. S.T. designed and performed analyses. J.S., J.Z., X. Zhang, X. Zhou, C.H., C.L. and H.Y. performed the functional experiments. L.Z. collected the samples. G.L. provided the genome assembly of R. affinis. R.G. and P.Z. provided RNA-seq data of RfKT cells. S.T., S.J.R. and H.Z. analysed data, discussed results and wrote the manuscript. All authors have read and approved the paper.

Corresponding authors

Correspondence to Stephen J. Rossiter or Huabin Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Zijun Xiong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 Global summary of genome assemblies for six bats

Extended Data Fig. 1 Maximum likelihood (ML) tree of 13 bats and 7 other mammals, showing numbers of expanded (purple) and contracted (red) gene families.

Grey blocks indicate confidence intervals for divergence times for all nodes. Orange shading corresponds to Rhinolophidae (horseshoe bats), pink to Hipposideridae, blue to other bats, and green to non-bat mammals.

Extended Data Fig. 2 Chord diagram depicting genome synteny between R. sinicus and each of R. affinis, R. pearsonii, and R. ferrumequinum.

In each diagram, R. sinicus is shown on the right-hand side. Syntenic blocks are connected, with percentages indicating the overall synteny rates across the genomes.

Extended Data Fig. 3 Tracing chromosomal evolution of Rhinolophidae.

The top panel displays the heat map of the interaction signal after aligning the R. pearsonii Hi-C data to the R. ferrumequinum genome. The middle panel shows the collinearity of the sequences related to two ancestral chromosome fission events between R. pearsonii and R. ferrumequinum, and between R. affinis and R. ferrumequinum, respectively. The bottom panel displays the heat map of the interaction signals after aligning the R. affinis Hi-C data to the R. ferrumequinum genome. Abbreviations: RAC, Rhinolophus ancestral chromosome; Chr, Chromosome.

Extended Data Fig. 4 Evolution of ANXA2R genes.

(a) The significant change of ANXA2R loci in each branch. “1” represents expansion, “−1” denotes contraction, no marks mean no change. Orange shading corresponds to horseshoe bats (Rhinolophidae), pink to roundleaf bats (Hipposideridae), blue to other bats, and green to non-bat mammals. (b) Phylogenetic tree analysis of intact ANXA2R genes of Yinpterochiroptera bats. The human ANXA2R sequence is used as an outgroup. All nodes received 100% bootstrap support.

Extended Data Fig. 5 Collinear analysis of R. aegyptiacus between the chromosome-level genome and the scaffold-level genome (Raegyp2.0).

There were many duplicated scaffold sequences where IFN-ω was located when examining.

Extended Data Fig. 6 Evolutionary expansions and contractions of type I IFN genes across 20 focal mammals.

“1” represents an expansion event relative to its ancestral clades, “−1” denotes a contraction event relative to its ancestral clades. “0” and no marks mean no change. We used the conditional likelihoods to test the statistical significance for each lineage (P < 0.05). Orange shading corresponds to horseshoe bats (Rhinolophidae), pink to roundleaf bats (Hipposideridae), blue to other bats, and green to non-bat mammals.

Extended Data Fig. 7 Gene gain and loss events in the examined bats.

The intact IFN-δ (a) and IFN-ω (b) gene repertoires of bats, with humans serving as the outgroup. Gene gain and loss events are mapped to the species tree, marked by purple and red numbers, respectively. Orange shading corresponds to horseshoe bats (Rhinolophidae), pink to roundleaf bats (Hipposideridae), blue to other bats, and green to humans.

Extended Data Fig. 8 Molecular evolutionary changes in C5aR1 protein.

(a) Alignment of C5aR1 protein sequences. The bottom panel shows the alignment for 20 mammals, with dots representing amino acids identical to the human sequence, and dashes denoting alignment gaps. The top panel shows the genotypes for three Rhinolophus-specific residues in 10 Rhinolophus populations, with H. armiger for comparison. We assessed the predicted physicochemical impact and found that E199Q (R. ferrumequinum and R. pearsonii) and L278T (all Rhinolophus bats) alters hydrophilic affinity, and E199K (R. sinicus and R. affinis) alters negative charge. (b) 3D-structure predictions of C5aR1 proteins for humans, R. sinicus, R. pearsonii, and H. armiger.

Extended Data Fig. 9 Functional assays in Rhinolophus ACE2.

(a) Expression of Rhinolophus ACE2 orthologues. We conducted immunofluorescence of intracellular Rhinolophus ACE2 expression level by detecting the C-terminal 3×FLAG-tag. The label ‘Human’ represents human ACE2-expressing HEK293T cells, and the ‘Vector’ indicates the HEK293T control cells. The scale bar is shown. One time for this experiment. (b) Assessment of the interaction between various Rhinolophus ACE2 orthologues and the SARS-CoV-2 RBD (receptor binding domain). Results were consistent across two biological replicates. (c) Characterization of Rhinolophus ACE2 orthologues mediating entry of SARS-CoV-2 viruses as shown using intracellular EGFP (Enhanced Green Fluorescent Protein). One time for this experiment.

Supplementary information

Supplementary Information

Supplementary Notes 1–8 and Figs. 1–12.

Reporting Summary

Peer Review File

Supplementary Tables

Supplementary Tables 1–43.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, S., Si, J., Zhang, L. et al. Comparative genomics provides insights into chromosomal evolution and immunological adaptation in horseshoe bats. Nat Ecol Evol 9, 705–720 (2025). https://doi.org/10.1038/s41559-025-02638-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41559-025-02638-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing