Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deep learning reveals the complex genetic architecture of male guppy colouration

Abstract

The extraordinary variation in male guppy (Poecilia reticulata) colouration is a powerful model for studying the interplay of natural and sexual selection. However, the complexity of this variation has hampered the high-resolution characterization and determination of the genetic architecture underlying male guppy colour and clouded our understanding of how this exceptional level of diversity is maintained. Here we identify the heritability and genetic basis of male colour variation using convolutional neural networks for high-resolution phenotyping coupled with selection experiments, controlled pedigrees and whole-genome resequencing for a genome-wide association study of colour traits. Our phenotypic and genomic results converge to show that colour patterning in guppies is a combination of many heritable features, each with a largely independent genetic architecture spanning the entire genome. Autosomally inherited ornaments are polygenic, with significant contributions from loci involved in neural crest cell migration. Unusually, the results of our genome-wide association study suggest that gene duplicates from the autosomes to the Y chromosome are responsible for much of the sex-linked variation in colour in guppies, providing a potential mechanism for the maintenance of variation of this classic model trait.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Quantification of pattern variation.
Fig. 2: Orange colour responds rapidly to selection.
Fig. 3: The localized heritability of colour is high, but the architecture is heterogeneous.
Fig. 4: Orange ornaments are strongly heritable, and their incidence and size responded to selection.
Fig. 5: The genetic architecture of colour pattern is a mix of autosomal loci and sex-linked loci.
Fig. 6: Large-effect CNVs underlie sex-linked variation in colour pattern.

Similar content being viewed by others

Data availability

Sequence data are available via the SRA under accession PRJNA1262490 (http://www.ncbi.nlm.nih.gov/bioproject/1262490), image data are available via the Federated Research Data Repository94 and tabular data are available via Zenodo at https://doi.org/10.5281/zenodo.15499676 (ref. 19). Source data are provided with this paper.

Code availability

Code is available via GitHub at https://github.com/Ax3man/vdBijl_etal_2025_GuppyColorPatterns and via Zenodo at https://doi.org/10.5281/zenodo.15499676 (ref. 19).

References

  1. Stephenson, J. F., Stevens, M., Troscianko, J. & Jokela, J. The size, symmetry, and color saturation of a male guppy’s ornaments forecast his resistance to parasites. Am. Nat. 196, 597–608 (2020).

    Article  PubMed  Google Scholar 

  2. Karino, K., Shinjo, S. & Sato, A. Algal-searching ability in laboratory experiments reflects orange spot coloration of the male guppy in the wild. Behaviour 144, 101–113 (2007).

    Article  Google Scholar 

  3. Evans, J. P., Kelley, J. L., Bisazza, A., Finazzo, E. & Pilastro, A. Sire attractiveness influences offspring performance in guppies. Proc. R. Soc. Lond. B 271, 2035–2042 (2004).

    Article  Google Scholar 

  4. Endler, J. A. Natural selection on color patterns in Poecilia reticulata. Evolution 34, 76–91 (1980).

    Article  PubMed  Google Scholar 

  5. Potter, T. et al. Female preference for rare males is maintained by indirect selection in Trinidadian guppies. Science 380, 309–312 (2023).

    Article  CAS  PubMed  Google Scholar 

  6. Houde, A. E. Mate choice based upon naturally occurring color-pattern variation in a guppy population. Evolution 41, 1–10 (1987).

    PubMed  Google Scholar 

  7. Houde, A. E. & Endler, J. A. Correlated evolution of female mating preferences and male color patterns in the guppy Poecilia reticulata. Science 248, 1405–1408 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Haskins, C. P., Haskins, E. F., McLaughlin, J. J. A. & Hewitt, R. E. in Vertebrate Speciation (ed Blair, W. F.) 320–395 (Univ. of Texas at Austin Press, 1961).

  9. Kemp, D. J., Reznick, D. N., Grether, G. F. & Endler, J. A. Predicting the direction of ornament evolution in Trinidadian guppies (Poecilia reticulata). Proc. R. Soc. B 276, 4335–4343 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Herdegen-Radwan, M., Cattelan, S., Buda, J., Raubic, J. & Radwan, J. What do orange spots reveal about male (and female) guppies? A test using correlated responses to selection. Evolution 75, 3037–3055 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Brooks, R. & Endler, J. A. Direct and indirect sexual selection and quantitative genetics of male traits in guppies (Poecilia reticulata). Evolution 55, 1002–1015 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Morris, J., Darolti, I., van der Bijl, W. & Mank, J. E. High-resolution characterization of male ornamentation and re-evaluation of sex linkage in guppies. Proc. R. Soc. B 287, 20201677 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hughes, K. A., Houde, A. E., Price, A. C. & Rodd, F. H. Mating advantage for rare males in wild guppy populations. Nature 503, 108–110 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Farr, J. A. Male rarity or novelty, female choice behavior, and sexual selection in the guppy, Poecilia reticulata Peters (Pisces: Poeciliidae). Evolution 31, 162–168 (1977).

    Article  PubMed  Google Scholar 

  15. Lindholm, A. K. & Breden, F. Sex chromosomes and sexual selection in poeciliid fishes. Am. Nat. 160, S214–S224 (2002).

    Article  PubMed  Google Scholar 

  16. Tripathi, N. et al. Genetic linkage map of the guppy, Poecilia reticulata, and quantitative trait loci analysis of male size and colour variation. Proc. R. Soc. B 276, 2195–2208 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nanda, I. et al. Sex chromosome polymorphism in guppies. Chromosoma 123, 373–383 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Kirpichnikov, V. S. Genetic Bases of Fish Selection (Springer, 1981).

  19. van der Bijl, W. et al. Ax3man/vdBijl_etal_2025_GuppyColorPatterns. Zenodo https://doi.org/10.5281/zenodo.15499676 (2025).

  20. Kruuk, L. E. B. Estimating genetic parameters in natural populations using the ‘animal model. Philos. Trans. R. Soc. Lond. B 359, 873–890 (2004).

    Article  Google Scholar 

  21. Winge, Ø. One-sided masculine and sex-linked inheritance in Lebistes reticulatus. J. Genet. 12, 145–162 (1922).

    Article  Google Scholar 

  22. Winge, Ø. & Ditlevsen, E. Colour inheritance and sex determination in Lebistes. Heredity 1, 65–83 (1947).

    Article  Google Scholar 

  23. Haskins, C. P., Young, P., Hewitt, R. E. & Haskins, E. F. Stabilised heterozygosis of supergenes mediating certain Y-linked colour patterns in populations of Lebistes reticulatus. Heredity 25, 575–589 (1970).

    Article  Google Scholar 

  24. Parichy, D. M., Ransom, D. G., Paw, B., Zon, L. I. & Johnson, S. L. An orthologue of the kit-related gene fms is required for development of neural crest-derived xanthophores and a subpopulation of adult melanocytes in the zebrafish, Danio rerio. Development 127, 3031–3044 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Wilkins, A. S., Wrangham, R. W. & Fitch, W. T. The “domestication syndrome” in mammals: a unified explanation based on neural crest cell behavior and genetics. Genetics 197, 795–808 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liley, N. R. Ethological isolating mechanisms in four sympatric species of poeciliid fishes. Behav. Suppl. 1, 1–197 (1966).

    Google Scholar 

  27. Houde, A. E. Sex, Color, and Mate Choice in Guppies (Princeton Univ. Press, 1997).

  28. Brooks, R. & Endler, J. A. Female guppies agree to differ: phenotypic and genetic variation in mate-choice behavior and the consequences for sexual selection. Evolution 55, 1644–1655 (2001).

    CAS  PubMed  Google Scholar 

  29. Schroff, F., Kalenichenko, D. & Philbin, J. FaceNet: A unified embedding for face recognition and clustering. In 2015 IEEE Conference on Computer Vision and Pattern Recognition 815–823 (IEEE, 2015); https://doi.org/10.1109/CVPR.2015.7298682

  30. Hoyal Cuthill, J. F., Guttenberg, N., Ledger, S., Crowther, R. & Huertas, B. Deep learning on butterfly phenotypes tests evolution’s oldest mathematical model. Sci. Adv. 5, eaaw4967 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Almeida, P. et al. Divergence and remarkable diversity of the Y chromosome in guppies. Mol. Biol. Evol. 38, 619–633 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Du, K. et al. Identification of the male-specific region on the guppy Y chromosome from a haplotype-resolved assembly. Genome Res. https://doi.org/10.1101/gr.279582.124 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wright, A. E. et al. Convergent recombination suppression suggests role of sexual selection in guppy sex chromosome formation. Nat. Commun. 8, 14251 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Darolti, I. et al. Extreme heterogeneity in sex chromosome differentiation and dosage compensation in livebearers. Proc. Natl Acad. Sci. USA 116, 19031–19036 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Künstner, A. et al. The genome of the Trinidadian guppy, Poecilia reticulata, and variation in the Guanapo population. PLoS ONE 11, e0169087 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fraser, B. A. et al. Improved reference genome uncovers novel sex-linked regions in the guppy (Poecilia reticulata). Genome Biol. Evol. 12, 1789–1805 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barriga, E. H. & Mayor, R. in Current Topics in Developmental Biology (ed. Yap, A. S.) vol. 112, 301–323, Ch. 9 (Academic Press, 2015).

  38. Parichy, D. M. & Spiewak, J. E. Origins of adult pigmentation: diversity in pigment stem cell lineages and implications for pattern evolution. Pigment Cell Melanoma Res. 28, 31–50 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Yin, L. et al. Epidermal gene expression and ethnic pigmentation variations among individuals of Asian, European and African ancestry. Exp. Dermatol. 23, 731–735 (2014).

    Article  PubMed  Google Scholar 

  40. Yong, L., Croft, D. P., Troscianko, J., Ramnarine, I. W. & Wilson, A. J. Sensory-based quantification of male colour patterns in Trinidadian guppies reveals no support for parallel phenotypic evolution in multivariate trait space. Mol. Ecol. 31, 1337–1357 (2022).

    Article  PubMed  Google Scholar 

  41. Hoek, K. S. et al. Novel MITF targets identified using a two-step DNA microarray strategy. Pigment Cell Melanoma Res. 21, 665–676 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, Y. et al. Transcriptome analyses of betta fish (Betta splendens) provide novel insights into fin regeneration and color-related genes. Gene 876, 147508 (2023).

    Article  CAS  PubMed  Google Scholar 

  43. Yu, H.-H. & Moens, C. B. Semaphorin signaling guides cranial neural crest cell migration in zebrafish. Dev. Biol. 280, 373–385 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Koludrovic, D. et al. Chromatin-remodelling complex NURF is essential for differentiation of adult melanocyte stem cells. PLoS Genet. 11, e1005555 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Miyadai, M. et al. Pax3 and Pax7 function in combination with Mitf to generate melanophores and xanthophores in medaka and zebrafish. Preprint at bioRxiv https://doi.org/10.1101/2023.06.22.546052 (2023).

  46. Korzeniwsky, K. G. et al. Dominant negative Mitf allele impacts melanophore and xanthophore development and reveals collaborative interactions with Tfec in zebrafish chromatophore lineages. Pigment Cell Melanoma Res. 38, e70009 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bhattacharya, D., Rothstein, M., Azambuja, A. P. & Simoes-Costa, M. Control of neural crest multipotency by Wnt signaling and the Lin28/let-7 axis. eLife 7, e40556 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Takahashi, K. et al. A globin-family protein, cytoglobin 1, is involved in the development of neural crest-derived tissues and organs in zebrafish. Dev. Biol. 472, 1–17 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Boer, E. F., Howell, E. D., Schilling, T. F., Jette, C. A. & Stewart, R. A. Fascin1-dependent filopodia are required for directional migration of a subset of neural crest cells. PLoS Genet. 11, e1004946 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lin, Y. et al. Gene duplication to the Y chromosome in Trinidadian guppies. Mol. Ecol. 31, 1853–1863 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Bergero, R., Gardner, J., Bader, B., Yong, L. & Charlesworth, D. Exaggerated heterochiasmy in a fish with sex-linked male coloration polymorphisms. Proc. Natl Acad. Sci. USA 116, 6924–6931 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tomaszkiewicz, M., Chalopin, D., Schartl, M., Galiana, D. & Volff, J.-N. A multicopy Y-chromosomal SGNH hydrolase gene expressed in the testis of the platyfish has been captured and mobilized by a Helitron transposon. BMC Genet. 15, 44 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sandkam, B. A. et al. Extreme Y chromosome polymorphism corresponds to five male reproductive morphs of a freshwater fish. Nat. Ecol. Evol. 5, 939–948 (2021).

    Article  PubMed  Google Scholar 

  54. Lindsay, C. R. et al. P-Rex1 is required for efficient melanoblast migration and melanoma metastasis. Nat. Commun. 2, 555 (2011).

    Article  PubMed  Google Scholar 

  55. Endler, J. A. in Evolutionary Ecology of Neotropical Freswater Fishes (ed Zaret, T. M.) 95–111 (Springer, 1984).

  56. Kotrschal, A. et al. Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain. Curr. Biol. 23, 168–171 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fong, S. et al. Rapid mosaic brain evolution under artificial selection for relative telencephalon size in the guppy (Poecilia reticulata). Sci. Adv. 7, eabj4314 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kotrschal, A. et al. Rapid evolution of coordinated and collective movement in response to artificial selection. Sci. Adv. 6, eaba3148 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Houde, A. E. Effect of artificial selection on male colour patterns on mating preference of female guppies. Proc. R. Soc. Lond. B 256, 125–130 (1994).

    Article  Google Scholar 

  60. Cole, G. L. & Endler, J. A. Change in male coloration associated with artificial selection on foraging colour preference. J. Evol. Biol. 31, 1227–1238 (2018).

    Article  PubMed  Google Scholar 

  61. Yamamoto, T. in Handbook of Genetics: Vertebrates of Genetic Interest vol. 4 (ed. King, R. C.) 133–149 (Springer, 1975); https://doi.org/10.1007/978-1-4613-4470-4_7

  62. Houde, A. E. Sex-linked heritability of a sexually selected character in a natural population of Poecilia reticulata (Pisces: Poeciliidae) (guppies). Heredity 69, 229–235 (1992).

    Article  Google Scholar 

  63. Gordon, S. P., López-Sepulcre, A. & Reznick, D. N. Predation-associated differences in sex linkage of wild guppy coloration. Evolution 66, 912–918 (2012).

    Article  PubMed  Google Scholar 

  64. Kotrschal, A., Corral-Lopez, A. & Kolm, N. Large brains, short life: selection on brain size impacts intrinsic lifespan. Biol. Lett. 15, 20190137 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lin, Y., Darolti, I., Bijl, W., van der, Morris, J. & Mank, J. E. Extensive variation in germline de novo mutations in Poecilia reticulata. Genome Res. 33, 1317–1324 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kottler, V. A., Fadeev, A., Weigel, D. & Dreyer, C. Pigment pattern formation in the guppy, Poecilia reticulata, involves the Kita and Csf1ra receptor tyrosine kinases. Genetics 194, 631–646 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kottler, V. A. et al. Adenylate cyclase 5 is required for melanophore and male pattern development in the guppy (Poecilia reticulata). Pigment Cell Melanoma Res. 28, 545–558 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Paris, J. R. et al. A large and diverse autosomal haplotype is associated with sex-linked colour polymorphism in the guppy. Nat. Commun. 13, 1233 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pérez-Gálvez, A. & Mínguez-Mosquera, M. I. Esterification of xanthophylls and its effect on chemical behavior and bioavailability of carotenoids in the human. Nutr. Res. 25, 631–640 (2005).

    Article  Google Scholar 

  70. Breithaupt, D. E., Bamedi, A. & Wirt, U. Carotenol fatty acid esters: easy substrates for digestive enzymes? Comp. Biochem. Physiol. B 132, 721–728 (2002).

    Article  PubMed  Google Scholar 

  71. Bruders, R. et al. A copy number variant is associated with a spectrum of pigmentation patterns in the rock pigeon (Columba livia). PLoS Genet. 16, e1008274 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Weich, K. et al. Pigment intensity in dogs is associated with a copy number variant upstream of KITLG. Genes 11, 75 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kokko, H., Jennions, M. D. & Houde, A. Evolution of frequency-dependent mate choice: keeping up with fashion trends. Proc. R. Soc. B 274, 1317–1324 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Gordon, S. P., López-Sepulcre, A., Rumbo, D. & Reznick, D. N. Rapid changes in the sex linkage of male coloration in introduced guppy populations. Am. Nat. 189, 196–200 (2017).

    Article  PubMed  Google Scholar 

  75. Bürkner, P.-C. Advanced Bayesian multilevel modeling with the R package brms. R J. 10, 395–411 (2018).

    Article  Google Scholar 

  76. Bürkner, P.-C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).

    Article  Google Scholar 

  77. Lenth, R. V. emmeans: Estimated Marginal Means, Aka Least-Squares Means (CRAN, 2023); https://CRAN.R-project.org/package=emmeans

  78. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  79. Pérez-Escudero, A., Vicente-Page, J., Hinz, R. C., Arganda, S. & de Polavieja, G. G. idTracker: tracking individuals in a group by automatic identification of unmarked animals. Nat. Methods 11, 743–748 (2014).

    Article  PubMed  Google Scholar 

  80. Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    Article  Google Scholar 

  81. Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. https://doi.org/10.18637/jss.v076.i01 (2017).

  82. Wolak, M. E. nadiv: an R package to create relatedness matrices for estimating non-additive genetic variances in animal models. Methods Ecol. Evol. 3, 792–796 (2012).

    Article  Google Scholar 

  83. Giovanny, C.-P. Genome assisted prediction of quantitative traits using the R package sommer. PLoS ONE 11, 1–15 (2016).

    Google Scholar 

  84. Zhang, Z. et al. Mixed linear model approach adapted for genome-wide association studies. Nat. Genet. 42, 355–360 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhou, X. & Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 44, 821–824 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Legarra, A., Aguilar, I. & Misztal, I. A relationship matrix including full pedigree and genomic information. J. Dairy Sci. 92, 4656–4663 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Li, X. & Zhu, X. in Statistical Human Genetics: Methods and Protocols (ed. Elston, R. C.) 455–467 (Springer, 2017); https://doi.org/10.1007/978-1-4939-7274-6_22

  88. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).

    Article  Google Scholar 

  89. Krassowski, M. ComplexUpset. Zenodo https://doi.org/10.5281/zenodo.3700590 (2020).

  90. Baglama, J., Reichel, L. & Lewis, B. W. Irlba: Fast Truncated Singular Value Decomposition and Principal Components Analysis for Large Dense and Sparse Matrices (2022).

  91. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tang, A. D. et al. Full-length transcript characterization of SF3B1 mutation in chronic lymphocytic leukemia reveals downregulation of retained introns. Nat. Commun. 11, 1438 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2023).

  94. van der Bijl, W. et al. Male guppy ornamentation: a multi-generational dataset of aligned images of guppies and their orange and black coloration. Federated Research Data Repository https://doi.org/10.20383/103.01281 (2025).

Download references

Acknowledgements

We thank L. Yong for sharing insights on guppy photography. We thank B. Sandkam, B. Furman, D. Metzger, L. Fong, Y. Lin, C. Hodson and J. Lewis for help with animal husbandry and valuable discussions and T. Booker for advice and comments on an earlier draft. Y. Lin contributed the female coverage data. Funding was provided by a Canada 150 Research Chair, NSERC and an ERC grant (680951) to J.E.M.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: W.v.d.B., A.C.-L. and J.E.M.; methodology: W.v.d.B.; formal analysis: W.v.d.B. and A.C.-L.; investigation: W.v.d.B., J.J.S., V.S.G., L.M.S., C.J., M.C.-C., A.C.-L. and J.E.M.; writing—original draft: W.v.d.B. and J.E.M.; writing—review and editing: W.v.d.B., J.J.S., V.S.G., L.M.S., C.J., M.C.-C., A.C.-L. and J.E.M.; visualization: W.v.d.B.; supervision: J.E.M.; project administration: J.J.S.; funding acquisition: J.E.M.

Corresponding author

Correspondence to Wouter van der Bijl.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Nidal Karagic, Claudius Kratochwil and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Variance components and heritability of total color, as estimated by a Bayesian animal model.

a) Cumulative posterior density bar graphs, for each component of total orange (left) and black (right) color. Bars represent in order: autosomal, X-linked and Y-linked genetic variance, maternal effects variance, tank environment variance, other environmental variance, variance due to asymmetry, and measurement error. b) Posterior distributions of the total, X-linked and Y-linked heritability of total color. c) Posterior distributions of the correlation between orange and black variance components. Posterior summaries are shown as posterior means (point) and 66% (thick lines) and 95% (thin lines) credible intervals in all panels.

Source data

Extended Data Fig. 2 Correlated effects of selection on orange area on the incidence of black coloration.

a) Density plots show the distribution of the percent of black coloration per generation and selection regime. Thin lines between generations connect fathers and sons. Thick lines inside the densities show the median value of color area. b) Heatmaps illustrating the effect of selection across the body. Each heatmap cell is colored by the log odds ratio (as estimated by a generalized linear mixed model), illustrating the relative odds that a male has black color at that location. Body positions where the incidence of black color is less than 1% are colored grey. c) Effect of selection on orange on location in black patternspace. Axes show black patternspace (after UMAP dimension reduction), with points indicating individuals, colored by selection direction, and facets showing the four generations.

Source data

Extended Data Fig. 3 Effects of artificial selection for orange coloration on sexual behavior, gross morphology and life history.

a to e) Comparison of display and sexually coercive behavior between down-selected (n = 46) and up-selected (n = 49) males from the F3 generation. f to h) Comparison of gross morphology between down-selected (n = 63) and up-selected (n = 62) males from the F3 generation. i & j) Comparison for life history parameters between down-selected (nF1 = 106, nF2 = 106) and up-selected (nF1 = 104, nF2 = 105) females from the F1 and F2 generations. All panels: Violin plots show the kernel densities of observations, and point estimates and error bars show the point estimate and 95% confidence intervals for the groups means estimated by a linear mixed model.

Source data

Extended Data Fig. 4 Black ornaments are heritable but responded only weakly to selection on orange color.

a) Pictograms of eight black ornaments. b) Heritabilities of the incidence and size (when present) of each ornament. Dots and lines reflect point estimates and 95% credible intervals, and the gradient bars show the cumulative posterior density. c&d) Effect of selection on the incidence and size of black ornaments. Error bars show 95% bootstrapped confidence intervals, and points represent means. X-axes show consecutive generations. Sample size (number of fish); P generation: 300; down-selected F1, F2, F3: 453, 570, 441; up-selected F1, F2, F3: 508, 513, 444.

Source data

Extended Data Fig. 5 Top 30 most common ornament combinations.

The y-axis shows the median color pattern for each combination of ornaments, while x-axis shows its count (top) and frequency in the population (bottom). The bars indicate the observed frequency, while the orange lines show the frequency predicted from the incidence of each of the pattern’s ornaments. Inset: The number of unique ornament combinations in the full dataset of all males (black line), compared the expectation derived from ornament incidence (orange). The expected distribution was calculated by randomly generating 3,229 males and their ornaments with P(incidence), repeated 1,000 times. The point and errorbar denote the mean and 95% confidence interval.

Source data

Extended Data Fig. 6 Pattern space encodes variation in the incidence and size of ornaments.

a&c) Pictograms of seven orange and eight black ornaments, matching with the associated panels in B&D respectively. b&d) Axes are the UMAP reduced representation of five-dimensional pattern space. Individuals are colored by the size of their relevant ornament, expressed as a fraction of the largest observed size, or colored grey if they lack the ornament. Note the use of a logarithmic scale for ornament size.

Source data

Extended Data Fig. 7 GWAS results for the presence/absence of six orange ornaments, as in Fig. 5.

Points represent SNPs and small indels, with their genomic location on the x-axis, and the p-value of the association on the y-axis. Numbers along the x axis denote linkage groups. Sex-linked loci are placed to the side, with both the sex-chromosome (LG12) and sex-linked loci cross-mapping to the autosomes shown, colored by their putative origin (red = X, blue = Y). Peaks are labelled with gene names, but unnamed and uncharacterized genes are not shown. Names with asterisk (*) indicate that more significant cross-mapping SNPs were present in the same peak.

Extended Data Fig. 8 GWAS results for the presence/absence of six black ornaments, as in Fig. 5.

Points represent SNPs and small indels, with their genomic location on the x-axis, and the p-value of the association on the y-axis. Numbers along the x axis denote linkage groups. Sex-linked loci are placed to the side, with both the sex-chromosome (LG12) and sex-linked loci cross-mapping to the autosomes shown, colored by their putative origin (red = X, blue = Y). Peaks are labelled with gene names, but unnamed and uncharacterized genes are not shown. Names with asterisk (*) indicate that more significant cross-mapping SNPs were present in the same peak.

Extended Data Fig. 9 Autosomally inherited ornaments are complex traits.

a) Pictograms of eight ornaments with (partial) autosomal inheritance. b) Illustrative GWAS peaks for the association with the ornaments depicted in A. Each point is a genetic variant, with black points surpassing the FDR-threshold, and the red point is the top variant. Horizontal lines show the location of all annotated genes, with labels only shown for characterized genes. c) Bars indicate the proportion of individuals with the ornament (depicted in A) depending on their genotype at the top variant. The proportion of variation in the phenotype that is explained by the top variant is displayed as Nagelkerke’s R2 calculated from a logistic regression. d) PheWAS heatmaps displaying Z-scores for the effect of the top variant on orange or black color across the body, controlling for autosomal and sex-linked relatedness.

Extended Data Fig. 10 Expression at texim and relation to ornament O6.

a) Expression of texim copy 6531 in three male and three female pools, as counts per million (CPM). b) The proportion of males with ornament O6, as a function of the presence of texim copy 6531, as determined by reads with diagnostic SNPs for that copy. The proportion of phenotypic variance is shown as Nagelkerke’s R2.

Source data

Supplementary information

Supplementary Information

Supplementary Notes, Figs. 1–14 and Table 1.

Reporting Summary

Source data

Source Data Figs. 1–6

Statistical source data.

Source Data Extended Data Figs. 1–6 and 10

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Bijl, W., Shu, J.J., Goberdhan, V.S. et al. Deep learning reveals the complex genetic architecture of male guppy colouration. Nat Ecol Evol 9, 1614–1625 (2025). https://doi.org/10.1038/s41559-025-02781-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41559-025-02781-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing