Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Long-term, multi-event surprise correlates with enhanced autobiographical memory

Abstract

Neurobiological and psychological models of learning emphasize the importance of prediction errors (surprises) for memory formation. This relationship has been shown for individual momentary surprising events; however, it is less clear whether surprise that unfolds across multiple events and timescales is also linked with better memory of those events. We asked basketball fans about their most positive and negative autobiographical memories of individual plays, games and seasons, allowing surprise measurements spanning seconds, hours and months. We used advanced analytics on National Basketball Association play-by-play data and betting odds spanning 17 seasons, more than 22,000 games and more than 5.6 million plays to compute and align the estimated surprise value of each memory. We found that surprising events were associated with better recall of positive memories on the scale of seconds and months and negative memories across all three timescales. Game and season memories could not be explained by surprise at shorter timescales, suggesting that long-term, multi-event surprise correlates with memory. These results expand notions of surprise in models of learning and reinforce its relevance in real-world domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Memory task, basic response characteristics and analytical approach.
Fig. 2: Surprise predicts memory for positive and negative plays.
Fig. 3: Full- and within-game surprises predict memory for positive and negative games.
Fig. 4: Surprise within and across full seasons predicts positive and negative season memories.

Similar content being viewed by others

Data availability

All relevant data necessary to reproduce these results are available at https://github.com/JamesWardAntony/bball_am. Other databases include the following: NBA API for play-by-play data (https://github.com/swar/nba_api); expert website with play-by-play win probabilities (https://www.inpredictable.com); year-by-year data on points scored versus points scored against for each team (for calculating team strength) (https://www.basketball-reference.com). Note that data we obtained on game-by-game betting odds are no longer available from the source that we obtained them from, but many of them can be found at https://www.kaggle.com/datasets/ehallmar/nba-historical-stats-and-betting-data and all the ones used in our dataset are in our data repository.

Code availability

All relevant code necessary to reproduce these results as Google Colab notebooks are available at https://github.com/JamesWardAntony/bball_am.

References

  1. Rouhani, N., Norman, K. & Niv, Y. Dissociable effects of surprising rewards on learning and memory. J. Exp. Psychol. Learn. Mem. Cogn. 44, 1430 (2018).

    PubMed  PubMed Central  Google Scholar 

  2. Rouhani, N., Norman, K. A., Niv, Y. & Bornstein, A. M. Reward prediction errors create event boundaries in memory. Cognition 203, 104269 (2020).

    PubMed  PubMed Central  Google Scholar 

  3. Jang, A. I., Nassar, M. R., Dillon, D. G. & Frank, M. J. Positive reward prediction errors during decision-making strengthen memory encoding. Nat. Hum. Behav. 3, 719–732 (2019).

    PubMed  PubMed Central  Google Scholar 

  4. Huang, J., Velarde, I., Ma, W. J. & Baldassano, C. Schema-based predictive eye movements support sequential memory encoding. eLife 12, e82599 (2023).

    PubMed  PubMed Central  Google Scholar 

  5. Rescorla, R. A. & Wagner, A. R. in Classical Conditioning II: Current Research and Theory (eds Black, A. H. & Prokasy, W. F.) 64–99 (Appleton-Century-Crofts, 1972).

  6. Metcalfe, J. Learning from errors. Annu. Rev. Psychol. 68, 465–489 (2017).

    PubMed  Google Scholar 

  7. Antony, J. W. et al. Behavioral, physiological, and neural signatures of surprise during naturalistic sports viewing. Neuron 109, 377–390 (2021).

    CAS  PubMed  Google Scholar 

  8. Brod, G. Predicting as a learning strategy. Psychonom. Bull. Rev. 28, 1839–1847 (2021).

    Google Scholar 

  9. Kapur, N. Syndromes of retrograde amnesia: a conceptual and empirical synthesis. Psychol. Bull. 125, 800–825 (1999).

    CAS  PubMed  Google Scholar 

  10. Lisman, J. E. & Grace, A. A. The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46, 703–713 (2005).

    CAS  PubMed  Google Scholar 

  11. Greve, A., Cooper, E., Kaula, A., Anderson, M. C. & Henson, R. Does prediction error drive one-shot declarative learning? J. Mem. Lang. 94, 149–165 (2017).

    PubMed  PubMed Central  Google Scholar 

  12. Pine, A., Sadeh, N., Ben-Yakov, A., Dudai, Y. & Mendelsohn, A. Knowledge acquisition is governed by striatal prediction errors. Nat. Commun. 9, 1673 (2018).

    PubMed  PubMed Central  Google Scholar 

  13. Kafkas, A. & Montaldi, D. Striatal and midbrain connectivity with the hippocampus selectively boosts memory for contextual novelty. Hippocampus 25, 1262–1273 (2015).

    PubMed  PubMed Central  Google Scholar 

  14. Takahashi, Y. K. et al. Dopamine neurons respond to errors in the prediction of sensory features of expected rewards. Neuron 95, 1395–1405.e3 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Howard, J. D. & Kahnt, T. Identity prediction errors in the human midbrain update reward-identity expectations in the orbitofrontal cortex. Nat. Commun. 9, 1611 (2018).

    PubMed  PubMed Central  Google Scholar 

  16. Frank, D., Kafkas, A. & Montaldi, D. Experiencing surprise: the temporal dynamics of its impact on memory. J. Neurosci. 42, 6435–6444 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Murty, V. P., LaBar, K. S. & Adcock, R. A. Distinct medial temporal networks encode surprise during motivation by reward versus punishment. Neurobiol. Learn. Mem. 134, 55–64 (2016).

    PubMed  PubMed Central  Google Scholar 

  18. Duncan, K., Ketz, N., Inati, S. J. & Davachi, L. Evidence for area CA1 as a match/mismatch detector: a high-resolution fMRI study of the human hippocampus. Hippocampus 22, 389–398 (2012).

    PubMed  Google Scholar 

  19. Bein, O., Duncan, K. & Davachi, L. Mnemonic prediction errors bias hippocampal states. Nat. Commun. 11, 3451 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Garrido, M. I., Barnes, G. R., Kumaran, D., Maguire, E. A. & Dolan, R. J. Ventromedial prefrontal cortex drives hippocampal theta oscillations induced by mismatch computations. NeuroImage 120, 362–370 (2015).

    PubMed  Google Scholar 

  21. Long, N. M., Lee, H. & Kuhl, B. A. Hippocampal mismatch signals are modulated by the strength of neural predictions and their similarity to outcomes. J. Neurosci. 36, 12677–12687 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gruber, M. J. et al. Theta phase synchronization between the human hippocampus and prefrontal cortex increases during encoding of unexpected information: a case study. J. Cogn. Neurosci. 30, 1646–1656 (2017).

    Google Scholar 

  23. Frank, D., Montemurro, M. A. & Montaldi, D. Pattern separation underpins expectation-modulated memory. J. Neurosci. 40, 3455–3464 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sinclair, A. H., Manalili, G. M., Brunec, I. K., Adcock, R. A. & Barense, M. D. Prediction errors disrupt hippocampal representations and update episodic memories. Proc. Natl Acad. Sci. USA 118, e2117625118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Preuschoff, K., ’t Hart, B. M. & Einhauser, W. Pupil dilation signals surprise: evidence for noradrenaline’s role in decision making. Front. Neurosci. 5, 115 (2011).

    PubMed  PubMed Central  Google Scholar 

  26. Braem, S., Coenen, E., Bombeke, K., van Bochove, M. E. & Notebaert, W. Open your eyes for prediction errors. Cogn., Affect. Behav. Neurosci. 15, 374–380 (2015).

    PubMed  Google Scholar 

  27. Filipowicz, A. L. S., Glaze, C. M., Kable, J. W. & Gold, J. I. Pupil diameter encodes the idiosyncratic, cognitive complexity of belief updating. eLife 9, e57872 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Clewett, D., Gasser, C. & Davachi, L. Dynamic arousal signals construct memories of time and events. Nat. Commun. 11, 4007 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Theobald, M. et al. Predicting vs guessing: the role of confidence for pupillometric markers of curiosity and surprise. Cogn. Emot. 36, 731–740 (2022).

    PubMed  Google Scholar 

  30. Ostwald, D. et al. Evidence for neural encoding of Bayesian surprise in human somatosensation. NeuroImage 62, 177–188 (2012).

    PubMed  Google Scholar 

  31. Reichardt, R., Polner, B. & Simor, P. Novelty manipulations, memory performance, and predictive coding: the role of unexpectedness. Front. Hum. Neurosci. 14, 1–11 (2020).

    Google Scholar 

  32. Pearce, J. M. & Hall, G. A model for Pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychol. Rev. 87, 532–552 (1980).

    CAS  PubMed  Google Scholar 

  33. Redgrave, P., Prescott, T. J., Gurney, K., Redgrave, P. & Prescott, T. J. Is the shortlatency dopamine response too short to signal reward error? Trends Neurosci. 2236, 146–151 (1999).

    Google Scholar 

  34. Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002).

    CAS  PubMed  Google Scholar 

  35. Ranganath, C. & Rainer, G. Neural mechanisms for detecting and remembering novel events. Nat. Rev. Neurosci. 4, 193–202 (2003).

    CAS  PubMed  Google Scholar 

  36. Bradley, M. M. Natural selective attention: orienting and emotion. Psychophysiology 46, 1–11 (2009).

    PubMed  Google Scholar 

  37. Sukalla, F., Shoenberger, H. & Bolls, P. D. Surprise! An investigation of orienting responses to test assumptions of narrative processing. Commun. Res. 43, 844–862 (2016).

    Google Scholar 

  38. Demeter, E., Glassberg, B., Gamble, M. L. & Woldorff, M. G. Reward magnitude enhances early attentional processing of auditory stimuli. Cogn., Affect., Behav. Neurosci. 22, 268–280 (2022).

    PubMed  Google Scholar 

  39. Itti, L. & Baldi, P. Bayesian surprise attracts human attention. Vis. Res. 49, 1295–1306 (2009).

    PubMed  Google Scholar 

  40. Rouhani, N. & Niv, Y. Signed and unsigned reward prediction errors dynamically enhance learning and memory. eLife 10, e61077 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Niv, Y. & Schoenbaum, G. Dialogues on prediction errors. TICS 12, 265–272 (2008).

    Google Scholar 

  42. Mackintosh, N. J. A theory of attention: variations in the associability of stimuli with reinforcement. Psychol. Rev. 82, 276–298 (1975).

    Google Scholar 

  43. Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    CAS  PubMed  Google Scholar 

  44. D’Ardenne, K., McClure, S. M., Nystrom, L. E. & Cohen, J. D. BOLD responses reflecting dopaminergic signals in the human ventral tegmental area. Science 319, 1264–1267 (2008).

    PubMed  Google Scholar 

  45. Bayer, H. M. & Glimcher, P. W. Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron 47, 129–141 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Calderon, C. B. et al. Signed reward prediction errors in the ventral striatum drive episodic memory. J. Neurosci. 41, 1716–1726 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. De Loof, E., Naert, L., Van Opstal, F. & Verguts, T. Signed reward prediction errors drive episodic learning. PLoS ONE 13, e0189212 (2018).

    PubMed  PubMed Central  Google Scholar 

  48. Momennejad, I. & Howard, M. W. Predicting the future with multi-scale successor representations. Preprint at bioRxiv https://doi.org/10.1101/449470 (2018).

  49. Wimmer, G. E. & Buchel, C. Learning of distant state predictions by the orbitofrontal cortex in humans. Nat. Commun. 10, 2554 (2019).

    Google Scholar 

  50. Tiganj, Z., Tang, W. & Howard, M. W. A computational model for simulating the future using a memory timeline. Proc. Annu. Meet. Cogn. Sci. Soc. 43, 1173–1179 (2021).

    Google Scholar 

  51. Rabovsky, M., Hansen, S. S. & Mcclelland, J. L. Modelling the N400 brain potential as change in a probabilistic representation of meaning. Nat. Hum. Behav. 2, 693–705 (2018).

    PubMed  Google Scholar 

  52. Goldstein, A. et al. Shared computational principles for language processing in humans and deep language models. Nat. Neurosci. 25, 369–380 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kumar, M. et al. Bayesian surprise predicts human event segmentation in story listening. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/qd2ra (2022).

  54. Nieuwland, M. S. & Van Berkum, J. J. A. When peanuts fall in love: N400 evidence for the power of discourse. J. Cogn. Neurosci. 18, 1098–1111 (2006).

    PubMed  Google Scholar 

  55. Chien, H. S. & Honey, C. J. Constructing and forgetting temporal context in the human cerebral cortex. Neuron 106, 675–686 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Weinstein, N. D. Unrealistic optimism about future life events. J. Personal. Soc. Psychol. 39, 806–820 (1980).

    Google Scholar 

  57. Ersner-Hershfield, H., Wimmer, G. E. & Knutson, B. Saving for the future self: Neural measures of future self-continuity predict temporal discounting. SCAN 4, 85–92 (2009).

    PubMed  Google Scholar 

  58. Brietzke, S. & Meyer, M. L. Temporal self-compression: behavioral and neural evidence that past and future selves are compressed as they move away from the present. Proc. Natl Acad. Sci. USA 118, e2101403118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Loewenstein, G. & D. Schkade, D. in Well-Being: Foundations of Hedonic Psychology (eds Kahneman, D. et al.) 85–105 (Russell Sage Foundation, 1997).

  60. Granberg, D. & Brent, E. When prophecy bends: the preference-expectation link in U.S. presidential elections, 1952-1980. J. Personal. Soc. Psychol. 45, 477–491 (1983).

    Google Scholar 

  61. Babad, E. & Katz, Y. Wishful thinking–against all odds. J. Appl. Soc. Psychol. 21, 1921–1938 (1991).

    Google Scholar 

  62. Ferguson, P. J. & Lakhani, K. R. Consuming contests: Outcome uncertainty and spectator demand for contest-based entertainment. Unit Working Paper No. 21-087. Working Knowledge https://hbswk.hbs.edu/item/consuming-contests-outcome-uncertainty-and-spectator-demand (2021).

  63. Whitney, J. D. Winning games versus winning championships: the economics of fan interest and team performance. Econom. Inq. XXVI, 703–724 (1988).

    Google Scholar 

  64. Congleton, A. R. & Berntsen, D. How suspense and surprise enhance subsequent memory: the case of the 2016 United States Presidential Election. Memory 30, 317–329 (2022).

    PubMed  Google Scholar 

  65. Chiew, K. S., Harris, B. B. & Adcock, R. A. Remembering election night 2016: subjective but not objective metrics of autobiographical memory vary with political affiliation, affective valence, and surprise. J. Exp. Psychol. Gen. 151, 390–409 (2021).

    PubMed  Google Scholar 

  66. Terner, Z. & Franks, A. Modeling player and team performance in basketball. Ann. Rev. Stat. Appl. 8, 1–23 (2021).

  67. Branscombe, N. R. & Wann, D. L. The positive social and self concept consequences of sports team identification. J. Sport Soc. Issues 15, 115–127 (1991).

    Google Scholar 

  68. Wann, L. & Branscombe, R. Die-hard and fair-weather fans: effects of identification on BIRGing and CORFing tendencies. J. Sport Soc. Issues 14, 103–117 (1990).

    Google Scholar 

  69. Kensinger, E. A. When the Red Sox shocked the Yankees: comparing negative and positive memories. Psychonom. Bull. Rev. 13, 757–763 (2006).

    Google Scholar 

  70. Kensinger, E. A. & Corkin, S. Memory enhancement for emotional words: are emotional words more vividly remembered than neutral words? Mem. Cogn. 31, 1169–1180 (2003).

    Google Scholar 

  71. Wang, J., Tambini, A. & Lapate, R. C. The tie that binds: temporal coding and adaptive emotion. Trends Cogn. Sci. 26, 1103–1118 (2022).

    PubMed  Google Scholar 

  72. Brown, R. & Kulik, J. Flashbulb memories. Cognition 5, 73–99 (1977).

    Google Scholar 

  73. Cooper, R. A., Kensinger, E. A. & Ritchey, M. Memories fade: the relationship between memory vividness and remembered visual salience. Psychological Sci. 30, 657–668 (2019).

  74. Dolcos, F., Labar, K. S. & Cabeza, R. Remembering one year later: role of the amygdala and the medial temporal lobe memory system in retrieving emotional memories. Proc. Natl Acad. Sci. USA 102, 2626–2631 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Williams, S. E., Ford, J. H. & Kensinger, E. A. The power of negative and positive episodic memories. Cogn. Affect. Behav. Neurosci. 22, 869–903 (2022).

  76. Sharot, T., Delgado, M. R. & Phelps, E. A. How emotion enhances the feeling of remembering. Nat. Neurosci. 7, 1376–1380 (2004).

    CAS  PubMed  Google Scholar 

  77. Maguire, E. A. & Mummery, C. J. Differential modulation of a common memory retrieval network revealed by positron emission tomography. Hippocampus 9, 54–61 (1999).

    CAS  PubMed  Google Scholar 

  78. Yonelinas, A. P. & Ritchey, M. The slow forgetting of emotional episodic memories: an emotional binding account. Trends Cogn. Sci. 19, 259–267 (2015).

    PubMed  PubMed Central  Google Scholar 

  79. Pillemer, D. B. Flashbulb memories of the assassination attempt on President Reagan. Cognition 16, 63–80 (1984).

    CAS  PubMed  Google Scholar 

  80. Bohannon, J. N. Flashbulb memories for the space shuttle disaster: a tale of two theories. Cognition 29, 179–196 (1988).

    PubMed  Google Scholar 

  81. Wright, D. B. Recall of the Hillsborough disaster over time: systematic biases of ‘flashbulb’ memories. Appl. Cogn. Psychol. 7, 129–138 (1993).

    Google Scholar 

  82. Hirst, W. et al. Long-term memory for the terrorist attack of September 11: flashbulb memories, event memories, and the factors that influence their retention. J. Exp. Psychol. Gen. 138, 161–176 (2009).

    PubMed  PubMed Central  Google Scholar 

  83. Chan, H. K. & Toyoizumi, T. An economic decision-making model of anticipated surprise with dynamic expectation. Preprint at arXiv https://doi.org/10.48550/arXiv.2108.12347 (2021).

  84. Clark, A. A nice surprise? Predictive processing and the active pursuit of novelty. Phenomenol. Cogn. Sci. 17, 521–534 (2018).

    Google Scholar 

  85. Hsiung, A., Poh, J.-H., Huettel, S. A. & Adcock, R. A. Spoiler alert! Curiosity encourages patience and joy in the presence of uncertainty. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/x5hgc (2022).

  86. Su-lin, G., Tuggle, C. A., Mitrook, M. A., Coussement, S. H. & Zillman, D. The thrill of a close game: who enjoys it and who doesn’t? J. Sport Soc. Issues 21, 53–64 (1997).

    Google Scholar 

  87. Ely, J., Frankel, A. & Kamenica, E. Suspense and surprise. J. Political Econ. 123, 215–260 (2015).

    Google Scholar 

  88. Geana, A., Wilson, R. C., Daw, N. & Cohen, J. D. Boredom, information seeking and exploration. in Proceedings of the 38th Annual Conference of the Cognitive Science Society (eds Papafragou, A. et al.) 1751–1756 (Cognitive Science Society, 2016).

  89. Cikara, M., Botvinick, M. M. & Fiske, S. T. Us versus them: social identity shapes neural responses to intergroup competition and harm. Psych. Sci. 22, 306–313 (2011).

    Google Scholar 

  90. Otto, A. R., Fleming, S. M. & Glimcher, P. W. Unexpected but incidental positive outcomes predict real-world gambling. Psych. Sci. 27, 299–311 (2016).

    Google Scholar 

  91. Otto, A. R. & Eichstaedt, J. C. Real-world unexpected outcomes predict city-level mood states and risk-taking behavior. PloS ONE 13, e0206923 (2018).

    PubMed  PubMed Central  Google Scholar 

  92. Villano, W. J., Otto, A. R., Chiemeka Ezie, C. E., Gillis, R. & Heller, A. S. Temporal dynamics of real-world emotion are more strongly linked to prediction error than outcome. J. Exp. Psychol. Gen. 149, 1755–1766 (2020).

    PubMed  Google Scholar 

  93. Bhatia, S., Mellers, B. & Walasek, L. Affective responses to uncertain real-world outcomes: sentiment change on Twitter. PLoS ONE 14, e0212489 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Feather, N. T. Valence of outcome and expectation of success in relation to task difficulty and perceived locus of control. J. Personal. Soc. Psychol. 7, 372–386 (1967).

    CAS  Google Scholar 

  95. Verinis, J. S., Brandsma, J. M. & Cofer, C. N. Discrepancy from expectation in relation to affect and motivation: tests of Mcclelland’S hypothesis. J. Personal. Soc. Psychol. 9, 47–58 (1968).

    Google Scholar 

  96. Ben-Yakov, A., Smith, V. & Henson, R. The limited reach of surprise: evidence against effects of surprise on memory for preceding elements of an event. Psychonomic Bull. Rev. 29, 1053–1064 (2021).

    Google Scholar 

  97. Gershman, S. J. & Daw, N. D. Reinforcement learning and episodic memory in humans and animals: an integrative framework. Annu. Rev. Psychol. 68, 101–128 (2017).

    PubMed  Google Scholar 

  98. Knutson, B., Taylor, J., Kaufman, M., Peterson, R. & Glover, G. Distributed neural representation of expected value. J. Neurosci. 25, 4806–4812 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Hastorf, A. H. & Cantril, H. Case reports they saw a game: a case study. J. Abnorm. Soc. Psychol. 49, 129–134 (1951).

    Google Scholar 

  100. Huff, M. et al. Fandom biases retrospective judgments not perception. Sci. Rep. 7, 43083 (2017).

  101. Price, P. C. Wishful thinking in the prediction of competitive outcomes. Think. Reason. 6, 161–172 (2000).

    Google Scholar 

  102. Marks, R. W. The effect of probability, desirability, and ‘privilege’ on the stated expectations of children. J. Personal. 19, 332–351 (1951).

    CAS  Google Scholar 

  103. Irwin, F. W. Stated expectations as functions of probability and desirability of outcomes. J. Personal. 21, 329–335 (1953).

    CAS  Google Scholar 

  104. Irwin, F. W. & Snodgrass, J. G. Effects of independent and dependent outcome values upon bets. J. Exp. Psychol. 71, 282–285 (1966).

    CAS  PubMed  Google Scholar 

  105. Bell, D. E. Disappointment in decision making under uncertainty. Op. Res. 33, 1–27 (1985).

    Google Scholar 

  106. Rainey, D. W., Larsen, J. & Yost, J. H. Disappointment theory and disappointment among baseball fans. J. Sport Behav. 32, 339–356 (2009).

    Google Scholar 

  107. Van Dijk, W. The impact of probability and magnitude of outcome on disappointment and elation. Organ. Behav. Hum. Decis. Process. 69, 277–284 (1997).

    Google Scholar 

  108. Kahneman, D. & Friedman, D. The psychology of preferences. Sci. Am. 246, 160–173 (1981).

    Google Scholar 

  109. Reid, R. L. The psychology of the near miss. J. Gambl. Behav. 2, 32–39 (1986).

    Google Scholar 

  110. Clark, L., Lawrence, A. J., Astley-Jones, F. & Gray, N. Gambling near-misses enhance motivation to gamble and recruit win-related brain circuitry. Neuron 61, 481–490 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Ong, D. C., Goodman, N. D. & Zaki, J. Near-misses sting even when they are uncontrollable. in Proceedings of the 37th Annual Meeting of the Cognitive Science Society, CogSci 2015 (eds David C. Noelle, D. C. et al.) 339–356 (Cognitive Science Society, 2015).

  112. Medvec, V. H., Madey, S. F. & Gilovich, T. When less is more: counterfactual thinking and satisfaction among Olympic medalists. J. Personal. Soc. Psychol. 69, 603–610 (1995).

    CAS  Google Scholar 

  113. Clark, L., Crooks, B., Clarke, R., Aitken, M. R. F. & Dunn, B. D. Physiological responses to near-miss outcomes and personal control during simulated gambling. J. Gambl. Stud. 28, 123–137 (2012).

    PubMed  Google Scholar 

  114. Mellers, B. A., Schwartz, A., Ho, K. & Ritov, I. Decision affect theory: emotional reactions to the outcomes of risky options. Psych. Sci. 8, 423–429 (1997).

    Google Scholar 

  115. Sutton, R. S & Barto, A. G. Introduction to Reinforcement Learning 2nd edn (MIT Press, 1998).

  116. Gershman, S. J., Moore, C. D., Todd, M. T. & Norman, K. A. The successor representation and temporal context. Neural Comput. 24, 1553–1568 (2012).

    PubMed  Google Scholar 

  117. Dayan, P. Improving generalization for temporal difference learning: the successor representation. Neural Comput. 5, 613–624 (1993).

    Google Scholar 

  118. Newsome, W. T., Britten, K. H. & Movshon, J. A. Neuronal correlates of a perceptual decision. Nature 341, 52–54 (1989).

    CAS  PubMed  Google Scholar 

  119. Brunton, B. W., Botvinick, M. M. & Brody, C. D. Rats and humans can optimally accumulate evidence for decision-making. Science 340, 95–98 (2013).

    CAS  PubMed  Google Scholar 

  120. Pinto, L., Tank, D. W. & Brody, C. D. Multiple timescales of sensory-evidence accumulation across the dorsal cortex. eLife 11, e70263 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Morcos, A. S. & Harvey, C. D. History-dependent variability in population dynamics during evidence accumulation in cortex. Nat. Neurosci. 19, 1672–1681 (2017).

    Google Scholar 

  122. Akrami, A., Kopec, C. D., Diamond, M. E. & Brody, C. D. Posterior parietal cortex represents sensory history and mediates its effects on behaviour. Nature 554, 368–372 (2018).

    CAS  PubMed  Google Scholar 

  123. Chao, Z. C., Takaura, K., Wang, L., Fujii, N. & Dehaene, S. Large-scale cortical networks for hierarchical prediction and prediction error in the primate brain. Neuron 100, 1252–1266.e3 (2018).

    CAS  PubMed  Google Scholar 

  124. Wacongne, C. et al. Evidence for a hierarchy of predictions and prediction errors in human cortex. Proc. Natl Acad. Sci. USA 108, 20754–20759 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Hwang, E. J., Dahlen, J. E., Mukundan, M. & Komiyama, T. History-based action selection bias in posterior parietal cortex. Nat. Commun. 8, 1242 (2017).

    PubMed  PubMed Central  Google Scholar 

  126. Baldassano, C. et al. Discovering event structure in continuous narrative perception and memory. Neuron 95, 709–721.e5 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Folkerts, S., Rutishauser, U. & Howard, M. W. Human episodic memory retrieval is accompanied by a neural contiguity effect. J. Neurosci. 38, 4200–4211 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Tsao, A. et al. Integrating time from experience in the lateral entorhinal cortex. Nature 561, 57–62 (2018).

    CAS  PubMed  Google Scholar 

  129. Bright, I. M. et al. A temporal record of the past with a spectrum of time constants in the monkey entorhinal cortex. Proc. Natl Acad. Sci. USA 117, 20274–20283 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Hasson, U., Furman, O., Clark, D., Dudai, Y. & Davachi, L. Enhanced intersubject correlations during movie viewing correlate with successful episodic encoding. Neuron 57, 452–462 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Honey, C. J. et al. Slow cortical dynamics and the accumulation of information over long timescales. Neuron 76, 423–434 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Wise, R. A. Dopamine, learning and motivation. Nat. Rev. Neurosci. 5, 483–494 (2004).

    CAS  PubMed  Google Scholar 

  133. Nour, M. M. et al. Dopaminergic basis for signaling belief updates, but not surprise, and the link to paranoia. Proc. Natl Acad. Sci. USA 115, E10167–E10176 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Starkweather, C. K., Babayan, B. M., Uchida, N. & Gershman, S. J. Dopamine reward prediction errors reflect hidden-state inference across time. Nat. Neurosci. 20, 581–589 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Bromberg-Martin, E. S., Matsumoto, M., Nakahara, H. & Hikosaka, O. Multiple timescales of memory in lateral habenula and dopamine neurons. Neuron 67, 499–510 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Kim, H. R. et al. A unified framework for dopamine signals across timescales. Cell 183, 1600–1616 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Davachi, L. Item, context and relational episodic encoding in humans. Curr. Opin. Neurobiol. 16, 693–700 (2006).

    CAS  PubMed  Google Scholar 

  138. Eichenbaum, H., Yonelinas, A. P. & Ranganath, C. The medial temporal lobe and recognition memory. Annu. Rev. Neurosci. 30, 123–152 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Pritzel, A. et al. Neural episodic control. In Proc. 34th International Conference on Machine Learning 2827–2836 (PMLR, 2016).

  140. Ritter, S. et al. Been there, done that: meta-learning with episodic recall. In Proc. 35th International Conference on Machine Learning 4354–4363 (2018).

  141. Lu, Q., Hasson, U. & Norman, K. A. A neural network model of when to retrieve and encode episodic memories. eLife 11, e74445 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Lengyel, M. & Dayan, P. Hippocampal contributions to control: the third way. Adv. Neural Inf. Process. Syst. 20, 889–896 (2008).

    Google Scholar 

  143. Tulving, E. & Pearlstone, Z. Availability versus accessibility of information in memory for words. J. Verbal Learn. Verbal Behav. 5, 381–391 (1966).

    Google Scholar 

  144. Congleton, A. R. & Berntsen, D. The devil is in the details: investigating the influence of emotion on event memory using a simulated event. Psych. Res. 84, 2339–2353 (2020).

    Google Scholar 

  145. Braun, E. K., Wimmer, G. E. & Shohamy, D. Retroactive and graded prioritization of memory by reward. Nat. Commun. 9, 4886 (2018).

    PubMed  PubMed Central  Google Scholar 

  146. Mather, M. & Sutherland, M. R. Arousal-biased competition in perception and memory. Perspect. Psych. Sci. 6, 114–133 (2011).

    Google Scholar 

  147. Bennion, K. A., Ford, J. H., Murray, B. D. & Kensinger, E. A. Oversimplification in the study of emotional memory. J. Int. Neuropsych. Soc. 19, 953–961 (2013).

    Google Scholar 

  148. Talarico J. M. & Rubin, D. C. (eds) in Flashbulb Memories 73–95 (Routledge, 2017).

  149. Henson, R. N. & Gagnepain, P. Predictive, interactive multiple memory systems. Hippocampus 1326, 1315–1326 (2010).

    Google Scholar 

  150. Quent, J. A., Henson, R. N. & Greve, A. A predictive account of how novelty influences declarative memory. Neurobiol. Learning Mem. 179, 107382 (2021).

    Google Scholar 

  151. Kintsch, W. Learning from text, levels of comprehension, or: why anyone would read a story anyway?. Poetics 9, 87–98 (1980).

    Google Scholar 

  152. Reisenzein, R., Horstmann, G. & Schutzwohl, A. The cognitive-evolutionary model of surprise: a review of the evidence. Top. Cogn. Sci. 11, 50–74 (2019).

    PubMed  Google Scholar 

  153. Modirshanechi, A., Brea, J. & Gerstner, W. A taxonomy of surprise definitions. J. Math. Psychol. 110, 102712 (2022).

    Google Scholar 

  154. Gold, B. P. et al. Musical reward prediction errors engage the nucleus accumbens and motivate learning. Proc. Natl Acad. Sci. USA 116, 3310–3315 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Tobin, V. Elements of Surprise: Our Mental Limits and the Satisfactions of Plot (Harvard Univ. Press, 2018).

  156. Bermejo-Berros, J., Lopez-Diez, J. & Gil Martínez, M. A. Inducing narrative tension in the viewer through suspense, surprise, and curiosity. Poetics 93, 101664 (2022).

    Google Scholar 

  157. Botzung, A., Rubin, D. C., Miles, A., Cabeza, R. & Labar, K. S. Mental hoop diaries: emotional memories of a college basketball game in rival fans. J. Neurosci. 30, 2130–2137 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Bernhardt, P. C., Dabbs, J. M., Fielden, J. A. & Lutter, C. D. Testosterone changes during vicarious experiences of winning and losing among fans at sporting events. Physiol. Behav. 65, 59–62 (1998).

    CAS  PubMed  Google Scholar 

  159. Tomita, T. M., Barense, M. D. & Honey, C. J. The similarity structure of real-world memories. Preprint at bioRxiv https://doi.org/10.1101/2021.01.28.428278 (2021).

  160. Breslin, C. W. & Safer, M. A. Effects of event valence on long-term memory for two baseball championship games. Psychol. Sci. 22, 1408–1412 (2011).

    PubMed  Google Scholar 

  161. Talarico, J. M. & Moore, K. M. Memories of ‘The Rivalry’: dsifferences in how fans of the winning and losing teams remember the same game. Appl. Cogn. Psychol. 756, 746–756 (2012).

    Google Scholar 

  162. Schmolck, H., Buffalo, E. A. & Squire, L. R. Memory distortions develop over time: recollections of the O.J. Simpson trial verdict after 15 and 32 months. Psychol. Sci. 11, 39–45 (2000).

    CAS  PubMed  Google Scholar 

  163. Stern, H. A Brownian motion model for the progress of sports scores. J. Am. Stat. Assoc. 89, 1128–1134 (1994).

    Google Scholar 

  164. Soligard, T. et al. How much is too much? (Part 1) International Olympic Committee consensus statement on load in sport and risk of injury. Br. J. Sports Med. 50, 1030–1041 (2016).

    PubMed  Google Scholar 

  165. Teramoto, M. et al. Game injuries in relation to game schedules in the National Basketball Association. J. Sci. Med. Sport 20, 230–235 (2017).

    PubMed  Google Scholar 

Download references

Acknowledgements

The following individuals assisted with data collection and scoring: J. V. Figueroa, T. Guerra, J. Henige, N. Saito and M. Smith. We thank E. Robinson and B. Holladay for help with statistics. We received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

J.W.A. conceived, programmed and analysed data from the experiment, and drafted the manuscript. J.V.D. and J.R.M. contributed to study design and scored a large portion of the recall data. A.J.B. contributed to study design. K.A.B. contributed to study design and coordinated all data collection.

Corresponding author

Correspondence to James W. Antony.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Alyssa Sinclair, Hal Stern and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Extra participant response attributes.

(a) Distribution of responses for each team combined for plays, games, and seasons. (b, c) Memory ages. Data were collected over the course of 9 months, so as an alternative to Fig. 1c,d, we plotted the time in days between the game date and study date for plays and games (b) or the time in years between the season start and study date (c).

Extended Data Fig. 2 Full win probability model.

(a, b) We plotted win probability by expected home minus away score difference and game time remaining when the home (a) and away (b) teams had possession of the ball. To illustrate the importance of team possession, we also plotted the contrast of home possession minus away possession (c). All graphs show data only from the 4th quarter of games.

Extended Data Fig. 3 Prediction algorithm validation against an expert.

Play surprise values from our algorithm correlated strongly with those from an expert.

Extended Data Fig. 4 Unsigned surprise over time across a game.

(a, b) We plotted the mean (a) and standard deviation of unsigned surprise (b) against game time using our metric. Mean surprise had momentary troughs and peaks at the beginning and end of each game, likely due to the momentary decrease and increase in shots taken within these short time frames. Interestingly, mean surprise tended to decrease throughout the game, owing to the probability that the outcome of many basketball games would be nearly decided at that point. However, standard deviation increased exponentially until the end of games, due to the combination of games with a near-certain outcome, which have almost no surprise, and close games, which involve increasingly rapid swings in win probability as one nears the finish.

Extended Data Fig. 5 Prediction algorithm validations related to game memories.

Signed full-game (a) and within-game surprise (b) values correlated strongly with those from an expert site. Similarly, full-game surprise values from the algorithm correlated strongly with those based on pre-game Las Vegas betting odds data (c).

Extended Data Fig. 6 Control analyses ruling out maximum play surprise as an alternative explanation for game surprise findings.

(a) Maximum unsigned play surprise within a game was greater for the positive and negative games chosen by participants than a null distribution of all games (left) [positive vs. null Mann-Whitney U = 6.9*10^5, p = 0.002, r = 0.20, 95% confidence interval: (−0.03,−0.007); negative vs. null Mann-Whitney U = 5.8*10^5, p < 0.001, r = 0.30, 95% confidence interval: (−0.05,−0.02)]. We therefore selected subsets of the positive and negative games that did not differ from the null distribution (right) (p > 0.10, enforced). (b) Using these modified distributions, negative games still had greater unsigned full-game (left) and within-game surprise (right) values than the null distribution (99% and 100% of the samples, respectively). Shown are averages across resamples. (c, d) We plotted the t-statistics of subsets of the game data that did not differ significantly in maximum play surprise. (c) t-statistics for positive (top) and negative (bottom) full-game surprise. (d) t-statistics for positive (top) and negative (bottom) within-game surprise. Both negative distributions remained significant, whereas both positive ones were not significant.

Extended Data Fig. 7 Season surprise after adjusting for differences in maximum full- and within-game surprise.

(ad) We plotted the t-statistics of subsets of the season data that did not differ from the null distribution in maximum game surprise. (a-b) t-statistics for positive (a) and negative (b) seasons, adjusting for maximum full-game surprise. (c-d) t-statistics for positive (c) and negative (d) seasons, adjusting for within-game maximum surprise. All distributions remained significant after adjusting for game surprise deviations from the null.

Extended Data Fig. 8 Characteristics of participant memories.

We plotted metrics for each type of memory on (a) how long fans were affected by the outcome (1=minutes, 2=hours, 3=days, 4=months, 5=still affected), (b) emotionality with respect to everyday life (−5 to 5; worst to best thing that happened on a given day, week, month, year, ever), (c) unsigned emotionality, (d) their level of fandom (1=almost indifferent, 2=preferred team in that sport, 3=favorite team in that sport, 4=favourite team in any sport), and (e) approximate number of times they re-watched the play, parts of the game, or parts of the season.

Extended Data Table 1 Sample memories in which participants included the preceding or following play, game, or season context in their description

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antony, J.W., Van Dam, J., Massey, J.R. et al. Long-term, multi-event surprise correlates with enhanced autobiographical memory. Nat Hum Behav 7, 2152–2168 (2023). https://doi.org/10.1038/s41562-023-01631-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41562-023-01631-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing