Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability

Abstract

Subnanoscale (<2 nm) high-entropy alloys (SHEAs) have garnered increasing attention for their unique physicochemical properties that enable high catalytic performance. However, this potential is offset by reduced stability, a characteristic typically associated with high-entropy alloys, due to their high reactivity at this scale. Here we circumvent this obstacle by using the localized surface plasmon resonance effect along with laser fragmentation in liquids for synthesizing SHEAs. Localized-surface-plasmon-resonance-generated hot electrons from gold nanoparticles facilitate metal ion reduction, whereas the 7-ns laser pulse induces ultrafast heating and cooling cycles, fusing multiple metals into SHEAs with enhanced stability. This method enables the incorporation of up to ten elements into SHEAs. The selected AuPtRuRhIr SHEAs demonstrate high stability to work under 2 A cm−2 at 2.12 V for over 1,200 h in a proton exchange membrane electrolyser. This work presents a general strategy for the preparation of SHEAs, applicable across a wide range of fields.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Morphology, composition and structure characterization of AuPtRuRhIr SHEAs.
Fig. 2: Elemental distribution of SHEAs.
Fig. 3: MD simulations of SHEAs.
Fig. 4: Electrocatalytic performance of AuPtRuRhIr SHEAs for electrochemical water splitting.

Similar content being viewed by others

Data availability

All data used for this study are available in the ScienceDB repository at https://doi.org/10.57760/sciencedb.29049 (ref. 57). Source data are provided with this paper.

References

  1. George, E. P., Raabe, D. & Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 4, 515–534 (2019).

    Article  CAS  Google Scholar 

  2. Yao, Y. et al. High-entropy nanoparticles: synthesis-structure property relationships and data-driven discovery. Science 376, eabn3103 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Yeh, J. W. et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004).

    Article  CAS  Google Scholar 

  4. Sun, Y. F. & Dai, S. High-entropy materials for catalysis: a new frontier. Sci. Adv. 7, eabg1600 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rao, Z. et al. Unveiling the mechanism of abnormal magnetic behavior of FeNiCoMnCu high-entropy alloys through a joint experimental-theoretical study. Phys. Rev. Mater. 4, 014402 (2020).

    Article  CAS  Google Scholar 

  6. Liu, D. et al. Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys at 20 kelvin. Science 378, 978–983 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Tao, L. et al. A general synthetic method for high-entropy alloy subnanometer ribbons. J. Am. Chem. Soc. 144, 10582–10590 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Luo, H. et al. Sub-2 nm microstrained high-entropy-alloy nanoparticles boost hydrogen electrocatalysis. Adv. Mater. 36, 2403674 (2024).

    Article  CAS  Google Scholar 

  9. Feng, G. et al. Sub-2 nm ultrasmall high-entropy alloy nanoparticles for extremely superior electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 143, 17117–17127 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Feng, G., Pan, Y., Su, D. & Xia, D. Constructing fully-active and ultra-active sites in high-entropy alloy nanoclusters for hydrazine oxidation-assisted electrolytic hydrogen production. Adv. Mater. 36, 2309715 (2024).

    Article  CAS  Google Scholar 

  11. Minamihara, H. et al. Continuous-flow reactor synthesis for homogeneous 1 nm-sized extremely small high-entropy alloy nanoparticles. J. Am. Chem. Soc. 144, 11525–11529 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Troparevsky, M. C., Morris, J. R., Kent, P. R. C., Lupini, A. R. & Stocks, G. M. Criteria for predicting the formation of single-phase high-entropy alloys. Phys. Rev. X 5, 011041 (2015).

    Google Scholar 

  13. Chen, P. C. et al. Polyelemental nanoparticle libraries. Science 352, 1565–1569 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Zhao, P. et al. Facile and general method to synthesize Pt based high-entropy-alloy nanoparticles. ACS Nano 16, 14017–14028 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Li, Y. et al. High-entropy-alloy nanoparticles with enhanced interband transitions for efficient photothermal conversion. Angew. Chem. Int. Ed. 60, 27113–27118 (2021).

    Article  CAS  Google Scholar 

  16. Li, M. et al. High-entropy alloy electrocatalysts go to (sub-)nanoscale. Sci. Adv. 10, eadn2877 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hao, J. et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat. Commun. 13, 2662 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fan, L. et al. High entropy alloy electrocatalytic electrode toward alkaline glycerol valorization coupling with acidic hydrogen production. J. Am. Chem. Soc. 144, 7224–7235 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Cao, G. et al. Liquid metal for high-entropy alloy nanoparticles synthesis. Nature 619, 73–77 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Gao, S. et al. Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis. Nat. Commun. 11, 2016 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yao, Y. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 359, 1489–1494 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Liao, Y. et al. High-entropy-alloy nanoparticles with 21 ultra-mixed elements for efficient photothermal conversion. Natl Sci. Rev. 9, nwac041 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Frias, J. et al. Generation of nanomaterials by reactive laser-synthesis in liquid. Sci. China Phys. Mech. Astron. 65, 274202 (2022).

    Article  Google Scholar 

  24. Zhang, D., Gokce, B. & Barcikowski, S. Laser synthesis and processing of colloids: fundamentals and applications. Chem. Rev. 117, 3990–4103 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Huang, H. & Zhigilei, L. V. Atomistic view of laser fragmentation of gold nanoparticles in a liquid environment. J. Phys. Chem. C 125, 13413–13432 (2021).

    Article  CAS  Google Scholar 

  26. Ziefuß, A. R. et al. Laser fragmentation of colloidal gold nanoparticles with high-intensity nanosecond pulses is driven by a single-step fragmentation mechanism with a defined educt particle-size threshold. J. Phys. Chem. C 122, 22125–22136 (2018).

    Article  Google Scholar 

  27. Amans, D., Diouf, M., Lam, J., Ledoux, G. & Dujardin, C. Origin of the nano-carbon allotropes in pulsed laser ablation in liquids synthesis. J. Colloid Interface Sci. 489, 114–125 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Shih, C., Wu, C., Shugaev, M. V. & Zhigilei, L. V. Atomistic modeling of nanoparticle generation in short pulse laser. J. Colloid Interface Sci. 489, 3–17 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Ziefuss, A. R. et al. Photoluminescence of fully inorganic colloidal gold nanocluster and their manipulation using surface charge effects. Adv. Mater. 33, 2101549 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brandiele, R. et al. Laser-optimized Pt-Y alloy nanoparticles embedded in Pt-Y oxide matrix for high stability and ORR electrocatalytic activity. J. Energy Chem. 92, 508–520 (2024).

    Article  CAS  Google Scholar 

  31. Chen, C. et al. Ruthenium-based single-atom alloy with high electrocatalytic activity for hydrogen evolution. Adv. Energy Mater. 9, 1803913 (2019).

    Article  Google Scholar 

  32. Bongiovanni, G. et al. The fragmentation mechanism of gold nanoparticles in water under femtosecond laser irradiation. Nanoscale Adv. 3, 5277–5283 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, Z. et al. Co3O4 nanoparticles with ultrasmall size and abundant oxygen vacancies for boosting oxygen involved reactions. Adv. Funct. Mater. 29, 1903444 (2019).

    Article  Google Scholar 

  34. Nag, A., Nguyen, C. M. & Tibbetts, K. M. Heterogeneous to homogeneous Cu–Ag nanoparticles by laser reduction in liquid. Appl. Surf. Sci. 610, 155384 (2023).

    Article  CAS  Google Scholar 

  35. Tahir, S. et al. Synthesis of high entropy alloy nanoparticles by pulsed laser ablation in liquids: influence of target preparation on stoichiometry and productivity. ChemNanoMat 10, e202400064 (2024).

    Article  CAS  Google Scholar 

  36. Waag, F. et al. Kinetically-controlled laser-synthesis of colloidal high-entropy alloy nanoparticles. RSC Adv. 9, 18547–18558 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, B. et al. General synthesis of high-entropy alloy and ceramic nanoparticles in nanoseconds. Nat. Synth. 1, 138–146 (2022).

    Article  Google Scholar 

  38. Govorov, A. O., Zhang, H., Demir, H. V. & Gun’ko, Y. K. Photogeneration of hot plasmonic electrons with metal nanocrystals: quantum description and potential applications. Nano Today 9, 85–101 (2014).

    Article  CAS  Google Scholar 

  39. Manjavacas, A., Liu, J. G., Kulkarni, V. & Nordlander, P. Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano 8, 7630–7638 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Hoggard, A. et al. Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene. ACS Nano 7, 11209–11217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. He, N. et al. Surface-plasmon-mediated alloying for monodisperse Au–Ag alloy nanoparticles in liquid. Inorg. Chem. 61, 12449–12457 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Li, J., Fang, Q., Liu, B., Liu, Y. & Liu, Y. Atomic-scale analysis of nanoindentation behavior of high-entropy alloy. J. Micromech. Mol. Phys. 1, 1650001 (2016).

    Article  Google Scholar 

  44. Qi, Y., He, T. & Feng, M. The effect of Cu and Mn elements on the mechanical properties of single-crystal CoCrFeNi-based high-entropy alloy under nanoindentation. J. Appl. Phys. 129, 195104 (2021).

    Article  CAS  Google Scholar 

  45. Mo, J. et al. Discovery of true electrochemical reactions for ultrahigh catalyst mass activity in water splitting. Sci. Adv. 2, e1600690 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Li, Y. et al. In-situ investigation and modeling of electrochemical reactions with simultaneous oxygen and hydrogen microbubble evolutions in water electrolysis. Int. J. Hydrogen Energy 44, 28283–28293 (2019).

    Article  CAS  Google Scholar 

  47. Luo, Y., Zhang, Z., Chhowalla, M. & Liu, B. Recent advances in design of electrocatalysts for high-current-density water splitting. Adv. Mater. 34, 2108133 (2022).

    Article  CAS  Google Scholar 

  48. Wen, Q. et al. Ultrahigh-current-density and long-term-durability electrocatalysts for water splitting. Small 18, 2104513 (2022).

    Article  CAS  Google Scholar 

  49. Wang, W. et al. Insights into the rapid two-phase transport dynamics in different structured porous transport layers of water electrolyzers through high-speed visualization. J. Power Sources 516, 230641 (2021).

    Article  CAS  Google Scholar 

  50. Ding, L. et al. Highly porous iridium thin electrodes with low loading and improved reaction kinetics for hydrogen generation in PEM electrolyzer cells. ACS Appl. Mater. Interfaces 15, 24284–24295 (2023).

    Article  CAS  PubMed  Google Scholar 

  51. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  52. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  53. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  PubMed  Google Scholar 

  56. Nørskov, J. K. et al. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23 (2005).

    Article  Google Scholar 

  57. Zhang, C. et al. Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability. ScienceDB https://doi.org/10.57760/sciencedb.29049 (2025).

Download references

Acknowledgements

We thank the USTC Center for Micro- and Nanoscale Research and Fabrication for their support. This work is funded by the National Key R&D Program of China (2020YFA0406103 and 2022YFE0126500), the National Natural Science Foundation of China (21725102, 91961106, 22150610467 and 22232003), the Strategic Priority Research Program of CAS (XDPB14) and the Open Funding Project of National Key Laboratory of Human Factors Engineering (SYFD062010K).

Author information

Authors and Affiliations

Authors

Contributions

C.Z. and J.L. conceived the research and designed the experiments. C.Z., J.L., Y.B. and C. Liu performed the synthesis and characterization of samples and the measurements of HER and OER. C.Z. and C. Liang developed the LFL system. Z.W. performed the materials simulations. C.Z., J.L. and Y.X. analysed the data and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Jingxiang Low or Yujie Xiong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Stephan Barcikowski and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–64, Tables 1–9, Notes 1–5 and refs. 1–60.

Supplementary Video 1

H2 bubble evolution during HER process on electrode.

Supplementary Video 2

O2 bubble evolution during OER process on electrode.

Source data

Source Data Fig. 1

Size distribution data plotted in Fig. 1f and XRD data plotted in Fig. 1h.

Source Data Fig. 3

MD simulations data plotted in Fig. 3.

Source Data Fig. 4

Electrochemical data plotted in Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Wang, Z., Liu, C. et al. Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability. Nat. Mater. (2025). https://doi.org/10.1038/s41563-025-02358-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-025-02358-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing