Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantitative and mechanistic insights into proton dynamics for fast energy storage

Abstract

Proton conduction in hydrogen-bond-rich protic electrolytes enables fast mass and charge transport, crucial for electrochemical energy storage and power conversion. Such transport can give proton-based batteries exceptional rate capability and low-temperature operation beyond other working ions. Here we show that in phosphoric acid (H3PO4) electrolytes, vehicular and structural proton transport coexist, and their contributions to conductivity can be quantitatively distinguished. We link structural diffusion directly to hydrogen-bond strength, enabling the precise tuning of proton migration. Guided by this, we reveal a double conductivity peak from regulated structural diffusion. The optimal electrolyte (5.8-M H3PO4) achieves high overall (232.9 mS cm−1) and structural (164.9 mS cm−1) conductivity. A MoO3CuFe-TBA battery with this electrolyte outperforms a deep-eutectic benchmark (8.3-M H3PO4), delivering >17,474 W kg−1 at room temperature and retaining 15.1 Wh kg−1 at −75 °C. These findings provide a framework for designing advanced protic electrolytes across electrochemical systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bulk phase characterizations of electrolytes.
Fig. 2: Quantifying and decoupling two transport mechanisms.
Fig. 3: H-bond evolution and its mathematical relationship with diffusivity.
Fig. 4: Proton transport behaviour and diffusion mechanisms in H3PO4.
Fig. 5: Electrochemical performance of a full H+ battery consisting of MoO3 5.8-M H3PO4 CuFe-TBA.

Similar content being viewed by others

Data availability

All data are available in the article or Supplementary Information. All experimental data reported in this study and Supplementary Information are available from the corresponding authors upon request. Source data are provided with this paper.

References

  1. Carlson, C. E. The proton radius puzzle. Prog. Part. Nucl. Phys. 82, 59–77 (2015).

    Article  CAS  Google Scholar 

  2. Agmon, N. et al. Protons and hydroxide ions in aqueous systems. Chem. Rev. 116, 7642–7672 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Musset, B. et al. Aspartate 112 is the selectivity filter of the human voltage-gated proton channel. Nature 480, 273–277 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Merte, L. R. et al. Water-mediated proton hopping on an iron oxide surface. Science 336, 889–893 (2012).

    Article  PubMed  CAS  Google Scholar 

  5. Foglia, F. et al. Disentangling water, ion and polymer dynamics in an anion exchange membrane. Nat. Mater. 21, 555–563 (2022).

    Article  PubMed  CAS  Google Scholar 

  6. Jiang, H. et al. Insights on the proton insertion mechanism in the electrode of hexagonal tungsten oxide hydrate. J. Am. Chem. Soc. 140, 11556–11559 (2018).

    Article  PubMed  CAS  Google Scholar 

  7. Decoursey, T. E. Voltage-gated proton channels and other proton transfer pathways. Physiol. Rev. 83, 475–579 (2003).

    Article  PubMed  CAS  Google Scholar 

  8. Tian, Y. et al. Visualizing Eigen/Zundel cations and their interconversion in monolayer water on metal surfaces. Science 377, 315–319 (2022).

    Article  PubMed  CAS  Google Scholar 

  9. Wendt, S. et al. Formation and splitting of paired hydroxyl groups on reduced TiO2(110). Phys. Rev. Lett. 96, 066107 (2006).

    Article  PubMed  CAS  Google Scholar 

  10. Wang, S. et al. Acid-in-clay electrolyte for wide-temperature-range and long-cycle proton batteries. Adv. Mater. 34, e2202063 (2022).

    Article  PubMed  Google Scholar 

  11. Li, Z. et al. Localized water restriction in ternary eutectic electrolytes for ultra-low temperature hydrogen batteries. Angew. Chem. Int. Ed. 64, e202416800 (2025).

    Article  CAS  Google Scholar 

  12. Kreuer, K.-D., Rabenau, A. & Weppner, W. Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors. Angew. Chem. Int. Ed. 21, 208–209 (1982).

    Article  Google Scholar 

  13. Agmon, N. The Grotthuss mechanism. Chem. Phys. Lett. 244, 456–462 (1995).

    Article  CAS  Google Scholar 

  14. Ding, M. S., Von Cresce, A. & Xu, K. Conductivity, viscosity, and their correlation of a super-concentrated aqueous electrolyte. J. Phys. Chem. C 121, 2149–2153 (2017).

    Article  CAS  Google Scholar 

  15. Yan, L. et al. Solid-state proton battery operated at ultralow temperature. ACS Energy Lett. 5, 685–691 (2020).

    Article  CAS  Google Scholar 

  16. Yue, F. et al. An ultralow temperature aqueous battery with proton chemistry. Angew. Chem. Int. Ed. 60, 13882–13886 (2021).

    Article  CAS  Google Scholar 

  17. Melchior, J. P., Kreuer, K. D. & Maier, J. Proton conduction mechanisms in the phosphoric acid-water system (H4P2O7–H3PO4·2H2O): a 1H, 31P and 17O PFG-NMR and conductivity study. Phys. Chem. Chem. Phys. 19, 587–600 (2016).

    Article  PubMed  Google Scholar 

  18. Vilčiauskas, L., Tuckerman, M. E., Bester, G., Paddison, S. J. & Kreuer, K.-D. The mechanism of proton conduction in phosphoric acid. Nat. Chem. 4, 461–466 (2012).

    Article  PubMed  Google Scholar 

  19. Ogawa, T., Kamiguchi, K., Tamaki, T., Imai, H. & Yamaguchi, T. Differentiating Grotthuss proton conduction mechanisms by nuclear magnetic resonance spectroscopic analysis of frozen samples. Anal. Chem. 86, 9362–9366 (2014).

    Article  PubMed  CAS  Google Scholar 

  20. Ogawa, T. et al. The proton conduction mechanism in a material consisting of packed acids. Chem. Sci. 5, 4878–4887 (2014).

    Article  CAS  Google Scholar 

  21. Chung, S. H., Bajue, S. & Greenbaum, S. G. Mass transport of phosphoric acid in water: a 1H and 31P pulsed gradient spin-echo nuclear magnetic resonance study. J. Chem. Phys. 112, 8515–8521 (2000).

    Article  CAS  Google Scholar 

  22. Aihara, Y., Sonai, A., Hattori, M. & Hayamizu, K. Ion conduction mechanisms and thermal properties of hydrated and anhydrous phosphoric acids studied with 1H, 2H, and 31P NMR. J. Phys. Chem. B 110, 24999–25006 (2006).

    Article  PubMed  CAS  Google Scholar 

  23. Vilčiauskas, L., Tuckerman, M. E., Melchior, J. P., Bester, G. & Kreuer, K.-D. First principles molecular dynamics study of proton dynamics and transport in phosphoric acid/imidazole (2:1) system. Solid State Ion. 252, 34–39 (2013).

    Article  Google Scholar 

  24. Krueger, R. A., Vilciauskas, L., Melchior, J. P., Bester, G. & Kreuer, K. D. Mechanism of efficient proton conduction in diphosphoric acid elucidated via first-principles simulation and NMR. J. Phys. Chem. B 119, 15866–15875 (2015).

    Article  PubMed  CAS  Google Scholar 

  25. Paolantoni, M., Sassi, P., Morresi, A. & Santini, S. Hydrogen bond dynamics and water structure in glucose-water solutions by depolarized Rayleigh scattering and low-frequency Raman spectroscopy. J. Chem. Phys. 127, 024504 (2007).

    Article  PubMed  Google Scholar 

  26. Rudolph, W. W. Raman- and infrared-spectroscopic investigations of dilute aqueous phosphoric acid solutions. Dalton Trans. 39, 9642–9653 (2010).

    Article  PubMed  CAS  Google Scholar 

  27. Melchior, J. P. & Frick, B. On the nanosecond proton dynamics in phosphoric acid-benzimidazole and phosphoric acid-water mixtures. Phys. Chem. Chem. Phys. 19, 28540–28554 (2017).

    Article  PubMed  CAS  Google Scholar 

  28. Mikalčiūtė, A. & Vilčiauskas, L. Insights into the hydrogen bond network topology of phosphoric acid and water systems. Phys. Chem. Chem. Phys. 23, 6213–6224 (2021).

    Article  PubMed  Google Scholar 

  29. Ludueña, G. A., Kühne, T. D. & Sebastiani, D. Mixed Grotthuss and vehicle transport mechanism in proton conducting polymers from ab initio molecular dynamics simulations. Chem. Mater. 23, 1424–1429 (2011).

    Article  Google Scholar 

  30. Mo, F. et al. Biomimetic organohydrogel electrolytes for high-environmental adaptive energy storage devices. EcoMat 1, e12008 (2019).

    Article  CAS  Google Scholar 

  31. Greenwood, N. N. & Thompson, A. The mechanism of electrical conduction in fused phosphoric and trideuterophosphoric acids. J. Chem. Soc. 3485, 3492 (1959).

    Google Scholar 

  32. Xue, Z., Qin, L., Jiang, J., Mu, T. & Gao, G. Thermal, electrochemical and radiolytic stabilities of ionic liquids. Phys. Chem. Chem. Phys. 20, 8382–8402 (2018).

    Article  PubMed  CAS  Google Scholar 

  33. Huang, Z. et al. Anion chemistry in energy storage devices. Nat. Rev. Chem. 7, 616–631 (2023).

    Article  PubMed  Google Scholar 

  34. Simon, S. L. Temperature-modulated differential scanning calorimetry: theory and application. Thermochim. Acta 374, 55–71 (2001).

    Article  CAS  Google Scholar 

  35. Bogdan, A., Molina, M. J. & Tenhu, H. Freezing and glass transitions upon cooling and warming and ice/freeze-concentration-solution morphology of emulsified aqueous citric acid. Eur. J. Pharm. Biopharm. 109, 49–60 (2016).

    Article  PubMed  CAS  Google Scholar 

  36. Sun, Q. The single donator-single acceptor hydrogen bonding structure in water probed by Raman spectroscopy. J. Chem. Phys. 132, 054507 (2010).

    Article  PubMed  Google Scholar 

  37. Cherif, M., Mgaidi, A., Ammar, N. & Vallee, G. A new investigation of aqueous orthophosphoric acid speciation using Raman spectroscopy. J. Solut. Chem. 29, 255–269 (2000).

    Article  CAS  Google Scholar 

  38. Sun, Q. The Raman OH stretching bands of liquid water. Vib. Spectrosc. 51, 213–217 (2009).

    Article  CAS  Google Scholar 

  39. Falk, M. & Giguère, P. A. Infrared spectrum of the H3O+ ion in aqueous solutions. Can. J. Chem. 35, 1196–1204 (1957).

    Article  Google Scholar 

  40. Elmore, K. L., Hatfield, J. D., Dunn, R. L. & Jones, A. D. Dissociation of phosphoric acid solutions at 25°. J. Phys. Chem. 69, 3520–3525 (1965).

    Article  CAS  Google Scholar 

  41. Rudolph, W. W. Raman-spectroscopic measurements of the first dissociation constant of aqueous phosphoric acid solution from 5 to 301 °C. J. Solut. Chem. 41, 630–645 (2012).

    Article  CAS  Google Scholar 

  42. Suwannakham, P., Chaiwongwattana, S. & Sagarik, K. Proton dissociation and transfer in hydrated phosphoric acid clusters. Int. J. Quantum Chem. 115, 486–501 (2015).

    Article  CAS  Google Scholar 

  43. Tyrrell, H. J. V. & Harris, K. R. Diffusion in Liquids: A Theoretical and Experimental Study (Butterworth-Heinemann, 2013).

  44. Donald, W. A. et al. Directly relating reduction energies of gaseous Eu(H2O)n3+, n = 55–140, to aqueous solution: the absolute SHE potential and real proton solvation energy. J. Am. Chem. Soc. 131, 13328–13337 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Batchelor, G. K. Brownian diffusion of particles with hydrodynamic interaction. J. Fluid Mech. 74, 1–29 (1976).

    Article  Google Scholar 

  46. Verma, A. K., Thorat, A. S. & Shah, J. K. Estimating ionic conductivity of ionic liquids: Nernst–Einstein and Einstein formalisms. J. Ion. Liq. 4, 100089 (2024).

    Article  Google Scholar 

  47. Chengfa Jiang Thermodynamics of aqueous phosphoric acid solution at 25 °C. Chem. Eng. Sci. 51, 689–693 (1996).

    Article  Google Scholar 

  48. Lu, N. et al. Enhanced low-temperature proton conductivity in hydrogen-intercalated brownmillerite oxide. Nat. Energy 7, 1208–1216 (2022).

    Article  CAS  Google Scholar 

  49. Zhu, Z. et al. An ultrafast and ultra-low-temperature hydrogen gas-proton battery. J. Am. Chem. Soc. 143, 20302–20308 (2021).

    Article  PubMed  CAS  Google Scholar 

  50. Jiang, H. et al. A high-rate aqueous proton battery delivering power below −78 °C via an unfrozen phosphoric acid. Adv. Energy Mater. 10, 2000968 (2020).

    Article  CAS  Google Scholar 

  51. Dalvit, C., Veronesi, M. & Vulpetti, A. 1H and 19F NMR chemical shifts for hydrogen bond strength determination: correlations between experimental and computed values. J. Magn. Reson. Open 12–13, 100070 (2022).

    Article  Google Scholar 

  52. Li, W. et al. Designing ternary hydrated eutectic electrolyte capable of four-electron conversion for advanced Zn–I2 full batteries. Energy Environ. Sci. 16, 4502–4510 (2023).

    Article  CAS  Google Scholar 

  53. Geng, L. et al. Eutectic electrolyte with unique solvation structure for high-performance zinc-ion batteries. Angew. Chem. Int. Ed. 61, e202206717 (2022).

    Article  CAS  Google Scholar 

  54. Wu, X. et al. Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries. Nat. Energy 4, 123–130 (2019).

    Article  CAS  Google Scholar 

  55. Jayalakshmi, M. & Scholz, F. Performance characteristics of zinc hexacyanoferrate–Prussian blue and copper hexacyanoferrate–Prussian blue solid state secondary cells. J. Power Sources 87, 37–45 (2000).

  56. Wessells, C. D., Huggins, R. A. & Cui, Y. Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat. Commun. 2, 550 (2011).

    Article  PubMed  Google Scholar 

  57. Machida, K. & Enyo, M. Structural and electrochromic properties of tungsten and molybdenum trioxide electrodes in acidic media. J. Electrochem. Soc. 137, 1169–1175 (1990).

    Article  CAS  Google Scholar 

  58. Farneth, W. E., McCarron, E. M., Sleight, A. W. & Staley, R. H. A comparison of the surface chemistry of two polymorphic forms of molybdenum trioxide. Langmuir 3, 217–223 (1987).

    Article  CAS  Google Scholar 

  59. Wang, J., Polleux, J., Lim, J. & Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 111, 14925–14931 (2007).

    Article  CAS  Google Scholar 

  60. Miller, J. R. & Simon, P. Electrochemical capacitors for energy management. Science 321, 651–652 (2008).

    Article  PubMed  CAS  Google Scholar 

  61. Simon, P. & Gogotsi, Y. Charge storage mechanism in nanoporous carbons and its consequence for electrical double layer capacitors. Philos. Trans. R. Soc. A 368, 3457–3467 (2010).

    Article  CAS  Google Scholar 

  62. Mayo, S. L., Olafson, B. D. & Goddard, W. A. DREIDING: a generic force field for molecular simulations. J. Phys. Chem. 94, 8897–8909 (1990).

    Article  CAS  Google Scholar 

  63. Rappe, A. K. & Iii, W. A. G. Charge equilibration for molecular dynamics simulations. J. Phys. Chem. 95, 3358–3363 (1991).

    Article  CAS  Google Scholar 

  64. Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1983).

    Article  Google Scholar 

  65. Berendsen, H. J. C., Postma, J. P. M., Gunsteren, W. F., van, DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).

    Article  CAS  Google Scholar 

  66. Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 113, 7756–7764 (2000).

    Article  CAS  Google Scholar 

  67. Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92, 508–517 (1990).

    Article  CAS  Google Scholar 

  68. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  PubMed  CAS  Google Scholar 

  69. Tkatchenko, A. & Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102, 073005 (2009).

    Article  PubMed  Google Scholar 

  70. Klamt, A. & Schuurmann, G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 2, 799–805 (1993).

    Article  Google Scholar 

Download references

Acknowledgements

We thank F. Wang and X. Qu for technical support. This work was supported by the National Natural Science Foundation of China (numbers 52261135631 and 52103335, F.W.; number 52071083, F.F.), the Science and Technology Commission of Shanghai Municipality (number 23TS1401700, F.W.), the Shanghai Pilot Program for Basic Research—Fudan University 21TQ1400100(25TQ012) (F.W.) and the Shanghai International Science and Technology Partnership Project (number 23520750400, F.W.). Work at Hunter College was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Energy Frontier Research Center ‘Breakthrough Electrolytes for Energy Storage (BEES)’ (Award DE-SC0019409, S.G.G.). Work at the School of Physics and Electronic Engineering was supported by the National Natural Science Foundation of China (number 52202245, Y. Lin), the Natural Science Fund for Colleges and Universities in Jiangsu Province (number 22KJB430004, Y. Lin) and the Jiangsu Special-Term Professor Program (Y. Lin). Work at Zhejiang Laboratory was supported by the Beforehand Research Project of the New Materials Computing Research Center (number 3700-32601, Y. Li).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Z.L., F.W., K.X., S.G.G. Methodology: Z.L., Y. Lin, M.N.G., Y. Li. Investigation: Z.L., F.W., M.N.G., M.L., Q.L. Visualization: Z.L., F.W., F.F., J.R., Y. Lin. Funding acquisition: F.W., F.F., D.S., S.G.G. Project administration: Z.L., F.W., S.G.G. Supervision: F.W., D.S., F.F., S.G.G. Writing—original draft: Z.L., K.X. Writing—review and editing: F.W., K.X., F.F., D.S.

Corresponding authors

Correspondence to Dalin Sun, Kang Xu, Fang Fang or Fei Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–3, Figs. 1–30, Tables 1–5 and References.

Source data

Source Data Fig. 1

Raw numerical values for all plots.

Source Data Fig. 2

Raw numerical values for all plots.

Source Data Fig. 3

Raw numerical values for all plots.

Source Data Fig. 4

Raw numerical values for all plots.

Source Data Fig. 5

Raw numerical values for all plots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Lin, Y., Garaga, M.N. et al. Quantitative and mechanistic insights into proton dynamics for fast energy storage. Nat. Mater. (2025). https://doi.org/10.1038/s41563-025-02366-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-025-02366-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing