Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A molten-salt dispersion of lanthanides at the atomic scale

Abstract

Lanthanide (Ln) elements have distinctive electronic structures and chemical behaviours that can be used to tune electrocatalytic performance when they are introduced as isolated atomic modifiers. However, their broader use remains limited because their high reactivity and ultralow reduction potentials make it difficult to develop general synthesis strategies that can atomically disperse Ln atoms on diverse substrates. Here we develop a molten-nitrite method that yields Ln single-atom catalysts, permitting the atomic isolation of multiple lanthanides on various supports, including metals, metal oxides and carbon materials. Mechanistic insights obtained from systematic control experiments indicate that Ln single-atom catalyst formation in molten nitrites is dictated by three factors: the Lux–Flood basicity effect, mass-diffusion resistance and molten-salt shielding. As a demonstration, Dy1/Pt shows an overpotential of 20 mV at a current density of −10 mA cm−2 in 0.5-M H2SO4 for acidic hydrogen evolution, which is superior to commercial Pt/C catalysts. This work establishes a framework for synthesizing Ln single-atom catalysts and positions molten-nitrite systems as a versatile platform for electrocatalyst synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Generation of single Dy atoms over various Cu-based substrates.
Fig. 2: Three synthesis mechanisms in molten nitrites.
Fig. 3: Synthesis of single Dy atoms on Pt, Rh and Ir NPs.
Fig. 4: Generality of molten nitrites for synthesizing Ln SACs.
Fig. 5: HER performance of Dy1/Pt in 0.5-M H2SO4.

Data availability

All data generated or analysed during this study are included in the article and its Supplementary Information, and are also available from the corresponding author upon request. Source data are provided with this paper.

References

  1. Li, C. et al. Rare earth-based nanomaterials in electrocatalysis. Coord. Chem. Rev. 489, 215204 (2023).

    Article  CAS  Google Scholar 

  2. Lucas, J. et al. Rare earths: science, technology, production and use. MRS Bull. 40, 452–453 (2015).

    Google Scholar 

  3. Wang, X. et al. Embedding oxophilic rare-earth single atom in platinum nanoclusters for efficient hydrogen electro-oxidation. Nat. Commun. 14, 3767 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Feng, J. et al. CO2 electrolysis to multi-carbon products in strong acid at ampere-current levels on La-Cu spheres with channels. Nat. Commun. 15, 4821 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Escudero-Escribano, M. et al. Pt5Gd as a highly active and stable catalyst for oxygen electroreduction. J. Am. Chem. Soc. 134, 16476–16479 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Escudero-Escribano, M. et al. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science 352, 73–76 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Li, M. et al. Oxophilic Tm-sites in MoS2 trigger thermodynamic spontaneous water dissociation for enhanced hydrogen evolution. Adv. Energy Mater. 14, 2401716 (2024).

    Article  CAS  Google Scholar 

  8. Mao, Q. et al. High-density rare-earth single-atom-triggered unconventional transition of adsorption configuration on La1Pd monatomic alloy metallene for sustainable electrocatalytic alkynol semi-hydrogenation. Adv. Funct. Mater. 34, 2404648 (2024).

    Article  CAS  Google Scholar 

  9. Li, L. et al. Lanthanide-regulating Ru-O covalency optimizes acidic oxygen evolution electrocatalysis. Nat. Commun. 15, 4974 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, S. et al. Lanthanide electronic perturbation in Pt-Ln (La, Ce, Pr and Nd) alloys for enhanced methanol oxidation reaction activity. Energy Environ. Sci. 14, 5911–5918 (2021).

    Article  CAS  Google Scholar 

  11. Sun, Y. et al. Boosting CO2 electroreduction to C2H4 via unconventional hybridization: high-order Ce4+4f and O2p interaction in Ce-Cu2O for stabilizing Cu+. ACS Nano 17, 13974–13984 (2023).

    Article  CAS  PubMed  Google Scholar 

  12. Feng, J. et al. Improving CO2-to-C2+ product electroreduction efficiency via atomic lanthanide dopant-induced tensile-strained CuOx catalysts. J. Am. Chem. Soc. 145, 9857–9866 (2023).

    Article  CAS  PubMed  Google Scholar 

  13. Xu, J. et al. Ultrathin 2D rare-earth nanomaterials: compositions, syntheses, and applications. Adv. Mater. 32, 1806461 (2020).

    Article  CAS  Google Scholar 

  14. Hu, Y. et al. Synthesis of Pt-rare earth metal nanoalloys. J. Am. Chem. Soc. 142, 953–961 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Santos, D. M. F. et al. Platinum–rare earth electrodes for hydrogen evolution in alkaline water electrolysis. Int. J. Hydrogen Energy 38, 3137–3145 (2013).

    Article  CAS  Google Scholar 

  16. Hu, Y. et al. Mechanistic insights into the synthesis of platinum–rare earth metal nanoalloys by a solid-state chemical route. Chem. Mater. 33, 535–546 (2021).

    Article  CAS  Google Scholar 

  17. Kanady, J. S. et al. Synthesis of Pt3Y and other early–late intermetallic nanoparticles by way of a molten reducing agent. J. Am. Chem. Soc. 139, 5672–5675 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Jiang, Y. et al. Molten salt synthesis of carbon-supported Pt-rare earth metal nanoalloy catalysts for oxygen reduction reaction. RSC Adv. 12, 4805–4812 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, X., Tang, Y., Lee, J.-M. & Fu, G. Recent advances in rare-earth-based materials for electrocatalysis. Chem. Catal. 2, 967–1008 (2022).

    CAS  Google Scholar 

  20. Peera, S. G., Lee, T. G. & Sahu, A. K. Pt-rare earth metal alloy/metal oxide catalysts for oxygen reduction and alcohol oxidation reactions: an overview. Sustain. Energ. Fuels 3, 1866–1891 (2019).

    Article  CAS  Google Scholar 

  21. Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Ma, W. et al. Electrocatalytic reduction of CO2 and CO to multi-carbon compounds over Cu-based catalysts. Chem. Soc. Rev. 50, 12897–12914 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Lin, Y. X. et al. Boosting selective nitrogen reduction to ammonia on electron-deficient copper nanoparticles. Nat. Commun. 10, 4380 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang, R. et al. Electrochemical nitrate reduction to ammonia using copper-based electrocatalysts. Next Energy 4, 100125 (2024).

    Article  CAS  Google Scholar 

  25. Li, Y. et al. Advancements in transition bimetal catalysts for electrochemical 5-hydroxymethylfurfural (HMF) oxidation. J. Energy Chem. 98, 24–46 (2024).

    Article  CAS  Google Scholar 

  26. Zheng, T. et al. Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying. Nat. Nanotechnol. 16, 1386–1393 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Li, J. et al. Selective CO2 electrolysis to CO using isolated antimony alloyed copper. Nat. Commun. 14, 340 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. LaMer, V. K. & Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 72, 4847–4854 (1950).

    Article  CAS  Google Scholar 

  29. Li, T. et al. Low-temperature molten salt synthesis for ligand-free transition metal oxide nanoparticles. ACS Appl. Energy Mater. 3, 3984–3990 (2020).

    Article  CAS  Google Scholar 

  30. Jansons, A. W., Koskela, K. M., Crockett, B. M. & Hutchison, J. E. Transition metal-doped metal oxide nanocrystals: efficient substitutional doping through a continuous growth process. Chem. Mater. 29, 8167–8176 (2017).

    Article  CAS  Google Scholar 

  31. Kerridge, D. H. & Shakir, W. M. Molten lithium nitrate-potassium nitrate eutectic: the reaction of tin(II) chloride. Thermochim. Acta 136, 149–152 (1988).

    Article  CAS  Google Scholar 

  32. Hu, C. et al. Misoriented high-entropy iridium ruthenium oxide for acidic water splitting. Sci. Adv. 9, eadf9144 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vreeland, E. C. et al. Enhanced nanoparticle size control by extending LaMer’s mechanism. Chem. Mater. 27, 6059–6066 (2015).

    Article  CAS  Google Scholar 

  34. Hayashi, Y., Kimura, T. & Yamaguchi, T. Preparation of rod-shaped BaTiO3 powder. J. Mater. Sci. 21, 757–762 (1986).

    Article  CAS  Google Scholar 

  35. Zhao, D. et al. On the viscosity of molten salts and molten salt mixtures and its temperature dependence. J. Energy Storage 61, 106707 (2023).

    Article  Google Scholar 

  36. Dash, A., Vaßen, R., Guillon, O. & Gonzalez-Julian, J. Molten salt shielded synthesis of oxidation prone materials in air. Nat. Mater. 18, 465–470 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Dash, A. et al. Synthesis of Ti3SiC2 MAX phase powder by a molten salt shielded synthesis (MS3) method in air. J. Eur. Ceram. Soc. 39, 3651–3659 (2019).

    Article  CAS  Google Scholar 

  38. Dai, Y. et al. The physical chemistry and materials science behind sinter-resistant catalysts. Chem. Soc. Rev. 47, 4314–4331 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Chen, J. et al. Diversity of platinum-sites at platinum/fullerene interface accelerates alkaline hydrogen evolution. Nat. Commun. 14, 1711 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

C.X. acknowledges the National Key Research and Development Program of China (2024YFB4105700), the Scientific Research Innovation Capability Support Project for Young Faculty (SRICSPYF-ZY2025052), the Natural Science Foundation of Sichuan Province (2025NSFJQ0017) and the University of Electronic Science and Technology of China (ZYGX2025TS001). T.Z. acknowledges NSFC (22278067 and 22322201). X.L. acknowledges NSFC (22475030) and the Natural Science Foundation of Sichuan Province (2024NSFSC1107). Q.J. acknowledges NSFC (22405035) and the Natural Science Foundation of Sichuan Province (2024NSFSC1104). We appreciate the Analysis and Testing Center, University of Electronic Science and Technology of China, for their technical support, especially Y. Hu and J. Li with regard to XRD and HAADF-STEM, respectively. We thank beamline BL11B (31124.02.SSRF.BL11B) of the Shanghai Synchrotron Radiation Facility for providing the beamtime. We appreciate the discussion with C. Guo from SUPCON Technology for the theoretical computations in this work.

Author information

Authors and Affiliations

Authors

Contributions

The project was conceptualized and supervised by C.X. H.W. conducted all the experiments with help from the other authors. H.W. carried out all the sample syntheses. H.W., H.Z. and Q.Z. performed the electrochemical tests. S.H. helped with the electron microscopy. H.W., J.L. and X.Z. performed the ex situ measurements. H.W. and Q.G. conducted the X-ray absorption fine structure measurements. C.L., X.L. and Y.Z. helped with the statistical analysis. C.L., X.Z., Q.Z. and J.L. provided useful discussion on this work. J.Z. helped with the design of the mechanism experiments. Y.J. designed the figures in the paper. H.W., C.L., T.Z., Q.J. and C.X. wrote and revised the paper.

Corresponding author

Correspondence to Chuan Xia  (夏川).

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Wolfgang Schmidt, Deli Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–69, Notes 1–13, Tables 1–4, additional methods and safety warning.

Supplementary Data 1

Atomic coordinates of the optimized computational models used in this work.

Source data

Source Data Fig. 1

EXAFS data of Dy1/CuO, Dy1/Cu2O, Dy1/Cu and references plotted in Fig. 1h.

Source Data Fig. 3

Dy1/Pt XRD data plotted in Fig. 3b, Dy1/Rh XRD data plotted in Fig. 3d, Dy1/Ir XRD data plotted in Fig. 3f, EXAFS data of Dy1/Pt, Dy1/Rh, Dy1/Ir and references plotted in Fig. 3g.

Source Data Fig. 4

EXAFS data of Dy1/Y2O3, Dy1/ZnO, Dy1/Pd, Dy1/AlOx, Dy1/RuO2, Dy1/SnO2, Dy1/C, Lu1/Mn3O4 and Lu1/FeOx and references plotted in Fig. 4b.

Source Data Fig. 5

LSV polarization data plotted in Fig. 5a, ECSA-normalized LSV polarization data plotted in Fig. 5b, Tafel slopes plotted in Fig. 5c, stability test data plotted in Fig. 5d and proton exchange membrane chronopotentiometry stability test data plotted in Fig. 5f.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Liu, C., Ji, Y. et al. A molten-salt dispersion of lanthanides at the atomic scale. Nat. Mater. (2026). https://doi.org/10.1038/s41563-026-02492-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41563-026-02492-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing