Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A Marine Group A isolate relies on other growing bacteria for cell wall formation

Abstract

Most of Earth’s prokaryotes live under energy limitation, yet the full breadth of strategies that enable survival under such conditions remain poorly understood. Here we report the isolation of a bacterial strain, IA91, belonging to the candidate phylum Marine Group A (SAR406 or ‘Candidatus Marinimicrobia’) that is unable to synthesize the central cell wall compound peptidoglycan itself. Using cultivation experiments and microscopy, we show that IA91 growth and cell shape depend on other bacteria, deriving peptidoglycan, energy and carbon from exogenous muropeptide cell wall fragments released from growing bacteria. Reliance on exogenous muropeptides is traceable to the phylum’s ancestor, with evidence of vertical inheritance across several classes. This dependency may be widespread across bacteria (16 phyla) based on the absence of key peptidoglycan synthesis genes. These results suggest that uptake of exogenous cell wall components could be a relevant and potentially common survival strategy in energy-limited habitats like the deep biosphere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Changes in IA91 cell morphology with culture conditions.
Fig. 2: Muropeptide metabolisms in IA91.
Fig. 3: Comparative genomics analyses.

Similar content being viewed by others

Data availability

Sequence data that support the findings of this study have been deposited in NCBI Sequence Read Archive under Bioproject accession numbers PRJDB13945 (IA91 genome) and PRJDB17482 (RNA-seq). Other genome sequences used in this study are available in GTDB. All unique biological materials (that is, strains Acc8 and IA91) are available at Japan Collection of Microorganisms (JCM) in RIKEN-BRC under accession numbers JCM 39386 (Acc8) and JCM 39387 (IA91). Raw microscopic images are available via Zenodo at https://doi.org/10.5281/zenodo.10617219 (ref. 62). Source data are provided with this paper.

References

  1. Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hoehler, T. M. & Jørgensen, B. B. Microbial life under extreme energy limitation. Nat. Rev. Microbiol. 11, 83–94 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Emilio, M. N., Michael, J. B., Natalia, G. Âl, Beatriz, M. Â. O. & Mikhail, V. Z. High variability of primary production in oligotrophic waters of the Atlantic Ocean: uncoupling from phytoplankton biomass and size structure. Mar. Ecol. Prog. Ser. 257, 1–11 (2003).

    Article  Google Scholar 

  4. Lever, M. A. et al. Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations. FEMS Microbiol. Rev. 39, 688–728 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Morris, J. J., Lenski, R. E. & Zinser, E. R. The Black Queen Hypothesis: evolution of dependencies through adaptive geneloss. mBio 3, e00036–12 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Swan, B. K. et al. Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. Proc. Natl Acad. Sci. USA 110, 11463–11468 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Giovannoni, S. J., Cameron Thrash, J. & Temperton, B. Implications of streamlining theory for microbial ecology. ISME J. 8, 1553–1565 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Fry, J. C., Parkes, R. J., Cragg, B. A., Weightman, A. J. & Webster, G. Prokaryotic biodiversity and activity in the deep subseafloor biosphere. FEMS Microbiol. Ecol. 66, 181–196 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Lloyd, K. G., Steen, A. D., Ladau, J., Yin, J. & Crosby, L. Phylogenetically novel uncultured microbial cells dominate Earth microbiomes. mSystems 3, e00055–00018 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hawley, A. K. et al. Diverse Marinimicrobia bacteria may mediate coupled biogeochemical cycles along eco-thermodynamic gradients. Nat. Commun. 8, 1507 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lewis, W. H., Tahon, G., Geesink, P., Sousa, D. Z. & Ettema, T. J. G. Innovations to culturing the uncultured microbial majority. Nat. Rev. Microbiol. 19, 225–240 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Fuhrman, J. A., McCallum, K. & Davis, A. A. Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans. Appl. Environ. Microbiol. 59, 1294–1302 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gordon, D. A. & Giovannoni, S. J. Detection of stratified microbial populations related to Chlorobium and Fibrobacter species in the Atlantic and Pacific oceans. Appl. Environ. Microbiol. 62, 1171–1177 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Hirakata, Y. et al. Identification and cultivation of anaerobic bacterial scavengers of dead cells. ISME J. 17, 2279–2289 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Mayer, C. et al. Bacteria’s different ways to recycle their own cell wall. Int. J. Med. Microbiol. 309, 151326 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Borisova, M. et al. Peptidoglycan recycling in Gram-positive bacteria is crucial for survival in stationary phase. mBio 7, e00923–00916 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schink, B. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev. 61, 262–280 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Katayama, T. et al. Isolation of a member of the candidate phylum ‘Atribacteria’ reveals a unique cell membrane structure. Nat. Commun. 11, 6381 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Katayama, T. & Kamagata, Y. in Hydrocarbon and Lipid Microbiology Protocols (eds McGenity, T. J. et al.) 177–195 (Springer, 2015).

  22. Imachi, H. et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 577, 519–525 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brumm, P. J. et al. Complete genome sequence of Thermus aquaticus Y51MC23. PLoS ONE 10, e0138674 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Johnson, J. W., Fisher, J. F. & Mobashery, S. Bacterial cell-wall recycling. Ann. N. Y. Acad. Sci. 1277, 54–75 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Jacobs, C., Huang, L. J., Bartowsky, E., Normark, S. & Park, J. T. Bacterial cell wall recycling provides cytosolic muropeptides as effectors for beta-lactamase induction. EMBO J. 13, 4684–4694 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dworkin, J. The medium is the message: interspecies and interkingdom signaling by peptidoglycan and related bacterial glycans. Annu. Rev. Microbiol. 68, 137–154 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Yoshimura, T. & Goto, M. D-amino acids in the brain: structure and function of pyridoxal phosphate-dependent amino acid racemases. FEBS J. 275, 3527–3537 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Löffler, F. E. et al. Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int. J. Syst. Evol. Microbiol. 63, 625–635 (2013).

    Article  PubMed  Google Scholar 

  29. Kube, M. et al. Genome sequence of the chlorinated compound-respiring bacterium Dehalococcoides species strain CBDB1. Nat. Biotechnol. 23, 1269–1273 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Graf, J. & Ruby, E. G. Host-derived amino acids support the proliferation of symbiotic bacteria. Proc. Natl Acad. Sci. USA 95, 1818–1822 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Embree, M., Liu, J. K., Al-Bassam, M. M. & Zengler, K. Networks of energetic and metabolic interactions define dynamics in microbial communities. Proc. Natl Acad. Sci. USA 112, 15450–15455 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Croft, M. T., Lawrence, A. D., Raux-Deery, E., Warren, M. J. & Smith, A. G. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438, 90–93 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Hosokawa, T., Koga, R., Kikuchi, Y., Meng, X.-Y. & Fukatsu, T. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc. Natl Acad. Sci. USA 107, 769–774 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Stams, A. J. M. & Plugge, C. M. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat. Rev. Microbiol. 7, 568–577 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Renzi, F. et al. Glycan-foraging systems reveal the adaptation of Capnocytophaga canimorsus to the dog mouth. mBio 6, e02507 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mayer, V. M. T. et al. Utilization of different MurNAc sources by the oral pathogen Tannerella forsythia and role of the inner membrane transporter AmpG. BMC Microbiol. 20, 352 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hottmann, I., Borisova, M., Schäffer, C. & Mayer, C. Peptidoglycan salvage enables the periodontal pathogen Tannerella forsythia to survive within the oral microbial community. Microb. Physiol. 31, 123–134 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Sharma, A. Persistence of Tannerella forsythia and Fusobacterium nucleatum in dental plaque: a strategic alliance. Curr. Oral Health Rep. 7, 22–28 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jørgensen, N. O., Stepanaukas, R., Pedersen, A. G., Hansen, M. & Nybroe, O. Occurrence and degradation of peptidoglycan in aquatic environments. FEMS Microbiol. Ecol. 46, 269–280 (2003).

    Article  PubMed  Google Scholar 

  40. Ramin, K. I. & Allison, S. D. Bacterial tradeoffs in growth rate and extracellular enzymes. Front. Microbiol. 10, 2956 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lynch, M. & Marinov, G. K. The bioenergetic costs of a gene. Proc. Natl Acad. Sci. USA 112, 15690–15695 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schönheit, P., Buckel, W. & Martin, W. F. On the origin of heterotrophy. Trends Microbiol. 24, 12–25 (2016).

    Article  PubMed  Google Scholar 

  43. Sajed, T. et al. ECMDB 2.0: a richer resource for understanding the biochemistry of E. coli. Nucleic Acids Res. 44, D495–D501 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Bradbeer, C., Woodrow, M. L. & Khalifah, L. I. Transport of vitamin B12 in Escherichia coli: common receptor system for vitamin B12 and bacteriophage BF23 on the outer membrane of the cell envelope. J. Bacteriol. 125, 1032–1039 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Katayama, T. et al. Physicochemical impacts associated with natural gas development on methanogenesis in deep sand aquifers. ISME J. 9, 436–446 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Komagata, K. & Suzuki, K.-I. in Methods in Microbiology Vol. 19 (eds Colwell, R. R. & Grigorova, R.) 161–207 (Academic Press, 1988).

  47. Malac, M., Beleggia, M., Kawasaki, M., Li, P. & Egerton, R. F. Convenient contrast enhancement by a hole-free phase plate. Ultramicroscopy 118, 77–89 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13, e1005595 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Completing bacterial genome assemblies with multiplex MinION sequencing. Microb. Genom. 3, e000132 (2017).

    PubMed  PubMed Central  Google Scholar 

  50. Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lu, S. et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res. 48, D265–d268 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Teufel, F. et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol. 40, 1023–1025 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pruesse, E. et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Capella-Gutiérrez, S., Sillaz-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lemoine, F. et al. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature 556, 452–456 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Shah, I. M., Laaberki, M. H., Popham, D. L. & Dworkin, J. A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell 135, 486–496 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Katayama, T. Data: A Marine Group A isolate relies on other growing bacteria for cell wall formation Zenodo https://doi.org/10.5281/zenodo.10617219 (2024).

Download references

Acknowledgements

We acknowledge the Kanto Natural Gas Development Co., Ltd. for collecting samples at their facilities. We also thank C. Miyako, R. Iwanami and M. Ogawara for assistance in molecular analyses and F. Nozawa and S. Yamaoka for assistance in cultivation experiments. The ampG-deficient cells of E. coli K-12 BW25113 were provided by the National Bio-Resource Project (NIG, Japan): E. coli. This work was supported by JSPS KAKENHI grant numbers 17K15183 (T.K.), 18H03367 (M.K.N.), 18H02426 (H.T.), 18H05295 (Y.K.), 22H04985 (H.I.) and 23K18158 (T.K.).

Author information

Authors and Affiliations

Authors

Contributions

T.K., M.K.N. and H.T. designed the study. T.K., M.K.N., Y.K. and H.T. wrote the paper. T.K., H.Y. and H.I. performed the cultures, and T.K. isolated strains Acc8 and IA91. T.K. and M.K.N. performed bioinformatic analyses. T.K. and K.M. performed phase-contrast and fluorescence microscopy. X.-Y.M. performed scanning and transmission electron microscopy. N.H. performed cryo-electron microscopy. H.A.T. and H.Y. performed stable carbon isotopic analysis. All authors reviewed the results and approved the paper.

Corresponding author

Correspondence to Taiki Katayama.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Phylogenetic tree of IA91 and MG-A members.

Phylogenomic tree (maximum-likelihood tree) of strain IA91 (bold red), clone MK-334 (bold) and relatives in Marine Group A based on a concatenated alignment of ribosomal proteins. Metagenome-assembled genomes of representatives in Genome Taxonomy Database with CheckM completeness ≥ 85% and contamination ≤ 5% were selected for the analysis. The previously-used clade names are indicated in parentheses. Asterisks in nodes denote low bootstrap values, that is, ultrafast bootstrap approximation < 95% or SH-like approximate likelihood ratio test (SH-aLRT) support < 80%.

Extended Data Fig. 2 Effect of ampicillin treatment on IA91 cell morphology.

Representative phase-contrast micrographs before treatment (after one week of cultivation) (a), after 24h treatment (b) and without treatment (c). SYBR Green I was used to stain DNA (right panels). n=3 independent experiments. (Scale bars: 5 µm).

Extended Data Fig. 3 Peptidoglycan staining of ampicillin-treated IA91 cells.

Peptidoglycan (PG) staining of IA91 cells showing the presence of PG layer in rod-shaped cells but not in coccoids. Ampicillin-treated cells from pure culture were stained with Alexa Flour 488 dye-labeled wheat germ agglutinin (WGA) and visualized using phase-contrast (left), fluorescent microscopy (middle) and overlay images (right). Cells were treated with ampicillin for shorter time frame (12 h) compared with those in Extended Data Fig. 2 so as to observe both rod- and sphere-shaped cells in the same condition. Coccoids with local staining are indicated by blue arrows, whereas non-stained coccoids are indicated by black arrows. n=3 independent experiments. (Scale bars: 5 µm).

Extended Data Fig. 4 The occurrence of IA91 growth in cultures supplemented with peptidoglycan-derived compounds.4.

The final concentration of each compound in the culture medium was 10 µg ml−1. IA91 growth was determined by CH4 production after one month of cultivation and microscopy after 10 days of cultivation. IA91 was cultured with H2-utilizing Methanothermobacter thermautotrophicus strain ΔH. For CH4 production, means ± standard deviation of triplicate cultures are shown (a). CH4 detection limit was 0.5 mM. Representative phase-contrast micrographs are shown (b-i). SYBR Green I was used to stain DNA (b-i). Cells of co-cultured M. thermautotrophicus strain ∆H are visible in cyan due to their F420 autofluorescence. n=3 independent experiments. Abbreviation; PG, peptidoglycan; MP, muropeptide; MurNAc, N-acetylmuramic acid; GlcNAc, N-acetylglucosamine; AA, PG amino acids (that is, D-Ala, D-Glu and L-Lys). (Scale bars: 5 µm, b-i).

Extended Data Fig. 5 The presence of PG synthesis and recycle proteins within the members of the classes UBA2242, AB16 and UBA8477.

Corresponding to each lineage, the presence/absence of specific proteins are indicated by the heatmap. Asterisk indicates the clade to which strain IA91 and clone MK-334 belongs.

Source data

Extended Data Fig. 6 Phylogenetic tree of MurB within MG-A.

Comparison of phylogenetic tree of MurB (left) and concatenated ribosomal proteins (right) within Marine Group A showing horizontal transfer of MurB gene to the classes SORT01, JAANXI01, UBA2242 and Ca. Marinisomatia. Nodes having low statistical support values (ultrabootstrap approximation < 95%) were removed from the tree.

Extended Data Fig. 7 Phylogenetic tree of MurA within MG-A.

Comparison of phylogenetic tree of MurA (left) and concatenated ribosomal proteins (right) within Marine Group A. Nodes having low statistical support values (ultrabootstrap approximation < 95%) were removed from the tree.

Extended Data Fig. 8 Phylogenetic tree of cytochrome c oxidase subunit 1 within MG-A.

Comparison of phylogenetic tree of cytochrome c oxidase subunit 1 (left) and concatenated ribosomal proteins (right) within Marine Group A showing horizontal transfer of cytochrome c oxidase subunit 1 gene to the classes SORT01, JAANXI01, UBA8477 and Ca. Marinisomatia. Nodes having low statistical support values (ultrabootstrap approximation < 95%) were removed from the tree.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13 and Tables 1–4.

Reporting Summary

Peer Review File

Supplementary Table 5

Phylogenetic distribution of genomes that lack MurA and MurB genes.

Supplementary Data 2

Statistical source data for Supplementary Figs. 5, 7 and 11.

Source data

Source Data Fig. 1

Statistical source data for Fig. 1.

Source Data Fig. 3

Statistical source data for Fig. 3.

Source Data Extended Data Fig. 5

Statistical source data for Extended Data Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katayama, T., Nobu, M.K., Imachi, H. et al. A Marine Group A isolate relies on other growing bacteria for cell wall formation. Nat Microbiol 9, 1954–1963 (2024). https://doi.org/10.1038/s41564-024-01717-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41564-024-01717-7

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology