Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A dominant subgroup of marine Bathyarchaeia assimilates organic and inorganic carbon into unconventional membrane lipids

Subjects

Abstract

Bathyarchaeia, an abundant and ecologically versatile archaea found commonly in marine sediments, has a key role in the global carbon cycle. However, its lipid biomarkers and carbon assimilation mechanisms are poorly understood. Here, using a highly enriched Bathyarchaeia culture (>95% archaea) obtained from estuarine sediment of the East China Sea, we show that Baizosediminiarchaeum (formerly subgroup Bathy-8), the most abundant and widespread Bathyarchaeia group on Earth, synthesizes butanetriol dialkyl glycerol tetraethers (BDGTs) as its dominant membrane lipids. BDGTs are unusual archaeal tetraether lipids characterized by a butanetriol backbone instead of the typical glycerol, challenging fundamental assumptions in archaeal lipid biochemistry. Although BDGTs have been previously identified in the methanogen Methanomassiliicoccus luminyensis, we now provide direct evidence that Bathyarchaeia also synthesizes BDGTs, definitively establishing this globally abundant group as a natural BDGT producer. Stable isotope probing with 13C-bicarbonate shows that Baizosediminiarchaeum assimilates carbon into BDGTs from both inorganic carbon and lignin. These unique carbon assimilation strategies suggest the biogeochemical importance of Baizosediminarchaeum in marine carbon cycling and organic matter decomposition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global distribution patterns of Bathyarchaeia subgroups in marine sediments.
Fig. 2: BDGT-0 structure and LC–MS detection of Bathyarchaeia-derived lipids.
Fig. 3: Archaeal community dynamics and lipid profiles across cultivation time points.
Fig. 4: Isotopic fractionation of BDGT-derived biphytane from 13C-labelled DIC and unlabelled lignin.

Similar content being viewed by others

Data availability

The 16S rRNA gene sequencing data from the East China Sea (Fig. 1) have been deposited in the NCBI SRA under accession number PRJNA1303662 and in the National Omics Data Encyclopedia under accession number OEP00006462. Mass spectrometry data supporting Fig. 2 and Extended Data Fig. 2 are publicly available via Zenodo at https://doi.org/10.5281/zenodo.16742269 (ref. 63). Stable isotope data supporting Fig. 4 are available via Zenodo at https://doi.org/10.5281/zenodo.16748030 (ref. 64). Source data are provided with this paper.

References

  1. Meng, J. et al. Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses. ISME J. 8, 650–659 (2014).

    CAS  PubMed  Google Scholar 

  2. He, Y. et al. Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments. Nat. Microbiol. 1, 16035 (2016).

    CAS  PubMed  Google Scholar 

  3. Hou, J. et al. Taxonomic and carbon metabolic diversification of Bathyarchaeia during its coevolution history with early Earth surface environment. Sci. Adv. 9, eadf5069 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Rinke, C. et al. A standardized archaeal taxonomy for the Genome Taxonomy Database. Nat. Microbiol. 6, 946–959 (2021).

    CAS  PubMed  Google Scholar 

  5. Feng, X., Wang, Y., Zubin, R. & Wang, F. Core metabolic features and hot origin of Bathyarchaeota. Engineering 5, 498–504 (2019).

    CAS  Google Scholar 

  6. Lloyd, K. G. et al. Predominant archaea in marine sediments degrade detrital proteins. Nature 496, 215–218 (2013).

    CAS  PubMed  Google Scholar 

  7. Yu, T. et al. Growth of sedimentary Bathyarchaeota on lignin as an energy source. Proc. Natl Acad. Sci. USA 115, 6022–6027 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lazar, C. S. et al. Genomic evidence for distinct carbon substrate preferences and ecological niches of Bathyarchaeota in estuarine sediments. Environ. Microbiol. 18, 1200–1211 (2016).

    CAS  PubMed  Google Scholar 

  9. Evans, P. N. et al. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350, 434–438 (2015).

    CAS  PubMed  Google Scholar 

  10. Wang, Y., Wegener, G., Ruff, S. E. & Wang, F. Methyl/alkyl‐coenzyme M reductase‐based anaerobic alkane oxidation in archaea. Environ. Microbiol. 23, 530–541 (2021).

    CAS  PubMed  Google Scholar 

  11. Yu, T. et al. Widespread Bathyarchaeia encode a novel methyltransferase utilizing lignin‐derived aromatics. mLife 2, 272–282 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Khomyakova, M. A., Merkel, A. Y., Mamiy, D. D., Klyukina, A. A. & Slobodkin, A. I. Phenotypic and genomic characterization of Bathyarchaeum tardum gen. nov., sp. nov., a cultivated representative of the archaeal class Bathyarchaeia. Front. Microbiol. 14, 1214631 (2023).

    PubMed  PubMed Central  Google Scholar 

  13. Buckles, L. K., Villanueva, L., Weijers, J. W., Verschuren, D. & Damsté, J. S. S. Linking isoprenoidal GDGT membrane lipid distributions with gene abundances of ammonia‐oxidizing Thaumarchaeota and uncultured crenarchaeotal groups in the water column of a tropical lake (Lake Challa, East Africa). Environ. Microbiol. 15, 2445–2462 (2013).

    CAS  PubMed  Google Scholar 

  14. Coffinet, S. et al. Structural elucidation and environmental distributions of butanetriol and pentanetriol dialkyl glycerol tetraethers (BDGTs and PDGTs). Biogeosciences 17, 317–330 (2020).

    CAS  Google Scholar 

  15. Meador, T. B. et al. The archaeal lipidome in estuarine sediment dominated by members of the Miscellaneous Crenarchaeotal Group. Environ. Microbiol. 17, 2441–2458 (2015).

    CAS  PubMed  Google Scholar 

  16. Zhu, C., Meador, T. B., Dummann, W. & Hinrichs, K. U. Identification of unusual butanetriol dialkyl glycerol tetraether and pentanetriol dialkyl glycerol tetraether lipids in marine sediments. Rapid Commun. Mass Spectrom. 28, 332–338 (2014).

    CAS  PubMed  Google Scholar 

  17. Becker, K. W. et al. Unusual butane- and pentanetriol-based tetraether lipids in Methanomassiliicoccus luminyensis, a representative of the seventh order of methanogens. Appl. Environ. Microbiol. 82, 4505–4516 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Janssen, P. H. & Kirs, M. Structure of the archaeal community of the rumen. Appl. Environ. Microbiol. 74, 3619–3625 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Paul, K., Nonoh, J. O., Mikulski, L. & Brune, A. “Methanoplasmatales,” Thermoplasmatales-related archaea in termite guts and other environments, are the seventh order of methanogens. Appl. Environ. Microbiol. 78, 8245–8253 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Poulsen, M. et al. Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nat. Commun. 4, 1428 (2013).

    PubMed  Google Scholar 

  21. Fillol, M., Auguet, J.-C., Casamayor, E. O. & Borrego, C. M. Insights in the ecology and evolutionary history of the Miscellaneous Crenarchaeotic Group lineage. ISME J. 10, 665–677 (2016).

    PubMed  Google Scholar 

  22. Söllinger, A. et al. Phylogenetic and genomic analysis of Methanomassiliicoccales in wetlands and animal intestinal tracts reveals clade-specific habitat preferences. FEMS Microbiol. Ecol. 92, fiv149 (2016).

    PubMed  Google Scholar 

  23. Zhou, Z., Chen, J., Cao, H., Han, P. & Gu, J.-D. Analysis of methane-producing and metabolizing archaeal and bacterial communities in sediments of the northern South China Sea and coastal Mai Po Nature Reserve revealed by PCR amplification of mcrA and pmoA genes. Front. Microbiol. 5, 789 (2015).

    PubMed  PubMed Central  Google Scholar 

  24. Lazar, C. S. et al. Environmental controls on intragroup diversity of the uncultured benthic archaea of the miscellaneous Crenarchaeotal group lineage naturally enriched in anoxic sediments of the White Oak River estuary (North Carolina, USA). Environ. Microbiol. 17, 2228–2238 (2015).

    CAS  PubMed  Google Scholar 

  25. Kubo, K. et al. Archaea of the Miscellaneous Crenarchaeotal Group are abundant, diverse and widespread in marine sediments. ISME J. 6, 1949–1965 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hoshino, T. et al. Global diversity of microbial communities in marine sediment. Proc. Natl Acad. Sci. USA 117, 27587–27597 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Rubin-Blum, M. et al. Diversity, activity, and abundance of benthic microbes in the Southeastern Mediterranean Sea. FEMS Microbiol. Ecol. 98, fiac009 (2022).

    PubMed  Google Scholar 

  28. Zhang, C. et al. Marine sediments harbor diverse archaea and bacteria with the potential for anaerobic hydrocarbon degradation via fumarate addition. FEMS Microbiol. Ecol. 97, fiab045 (2021).

    CAS  PubMed  Google Scholar 

  29. Elling, F. J. et al. Effects of growth phase on the membrane lipid composition of the thaumarchaeon Nitrosopumilus maritimus and their implications for archaeal lipid distributions in the marine environment. Geochim. Cosmochim. Acta 141, 579–597 (2014).

    CAS  Google Scholar 

  30. Simon, M. & Azam, F. Protein content and protein synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 51, 201–213 (1989).

  31. Blewett, J., Naafs, B., Gallego-Sala, A. & Pancost, R. D. Effects of temperature and pH on archaeal membrane lipid distributions in freshwater wetlands. Org. Geochem. 148, 104080 (2020).

    CAS  Google Scholar 

  32. Takano, Y. et al. Sedimentary membrane lipids recycled by deep-sea benthic archaea. Nat. Geosci. 3, 858–861 (2010).

    CAS  Google Scholar 

  33. Knappy, C. et al. Mono‐, di‐ and trimethylated homologues of isoprenoid tetraether lipid cores in archaea and environmental samples: mass spectrometric identification and significance. J. Mass Spectrom. 50, 1420–1432 (2015).

    CAS  PubMed  Google Scholar 

  34. Elling, F. J. et al. Chemotaxonomic characterisation of the thaumarchaeal lipidome. Environ. Microbiol. 19, 2681–2700 (2017).

    CAS  PubMed  Google Scholar 

  35. Meador, T. B. et al. Thermococcus kodakarensis modulates its polar membrane lipids and elemental composition according to growth stage and phosphate availability. Front. Microbiol. 5, 10 (2014).

    PubMed  PubMed Central  Google Scholar 

  36. Niederberger, T. D., Götz, D. K., McDonald, I. R., Ronimus, R. S. & Morgan, H. W. Ignisphaera aggregans gen. nov., sp. nov., a novel hyperthermophilic crenarchaeote isolated from hot springs in Rotorua and Tokaanu, New Zealand. Int. J. Syst. Evol. Microbiol. 56, 965–971 (2006).

    CAS  PubMed  Google Scholar 

  37. Zhu, Q.-Z., Elvert, M., Meador, T. B., Becker, K. W. & Heuer, V. B. Stable carbon isotopic compositions of archaeal lipids constrain terrestrial, planktonic, and benthic sources in marine sediments. Geochim. Cosmochim. Acta 307, 319–337 (2021).

    CAS  Google Scholar 

  38. Gliozzi, A., Relini, A. & Chong, P. L.-G. Structure and permeability properties of biomimetic membranes of bolaform archaeal tetraether lipids. J. Membr. Sci. 206, 131–147 (2002).

    CAS  Google Scholar 

  39. Blewett, J. et al. Metabolic and ecological controls on the stable carbon isotopic composition of archaeal (isoGDGT and BDGT) and bacterial (brGDGT) lipids in wetlands and lignites. Geochim. Cosmochim. Acta 320, 1–25 (2022).

    CAS  Google Scholar 

  40. Liang, W., Yu, T., Dong, L., Jia, Z. & Wang, F. Determination of carbon-fixing potential of Bathyarchaeota in marine sediment by DNA stable isotope probing analysis. Sci. China Earth Sci. 66, 910–917 (2023).

    CAS  Google Scholar 

  41. Yin, X. et al. Physiological versatility of ANME-1 and Bathyarchaeotoa-8 archaea evidenced by inverse stable isotope labeling. Microbiome 12, 68 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Jain, S., Caforio, A. & Driessen, A. J. Biosynthesis of archaeal membrane ether lipids. Front. Microbiol. 5, 641 (2014).

    PubMed  PubMed Central  Google Scholar 

  43. Londry, K. L., Dawson, K. G., Grover, H. D., Summons, R. E. & Bradley, A. S. Stable carbon isotope fractionation between substrates and products of Methanosarcina barkeri. Org. Geochem. 39, 608–621 (2008).

    CAS  Google Scholar 

  44. Wu, W. et al. Substrate‐dependent incorporation of carbon and hydrogen for lipid biosynthesis by Methanosarcina barkeri. Environ. Microbiol. Rep. 12, 555–567 (2020).

    CAS  PubMed  Google Scholar 

  45. Hayes, J. M. Fractionation of carbon and hydrogen isotopes in biosynthetic processes. in Stable Isotope Geochemistry 1st edn (eds Valley, J. W. & Cole, D. R.) Ch. 3 (De Gruyter, 2018).

  46. Kurth, J. M. et al. Methanogenic archaea use a bacteria-like methyltransferase system to demethoxylate aromatic compounds. ISME J. 15, 3549–3565 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lloyd, M. et al. Methoxyl stable isotopic constraints on the origins and limits of coal-bed methane. Science 374, 894–897 (2021).

    CAS  PubMed  Google Scholar 

  48. Mallinson, S. J. et al. A promiscuous cytochrome P450 aromatic O-demethylase for lignin bioconversion. Nat. Commun. 9, 2487 (2018).

    PubMed  PubMed Central  Google Scholar 

  49. Sessions, A. L. & Hayes, J. M. Calculation of hydrogen isotopic fractionations in biogeochemical systems. Geochim. Cosmochim. Acta 69, 593–597 (2005).

    CAS  Google Scholar 

  50. Sturt, H. F., Summons, R. E., Smith, K., Elvert, M. & Hinrichs, K. U. Intact polar membrane lipids in prokaryotes and sediments deciphered by high‐performance liquid chromatography/electrospray ionization multistage mass spectrometry—new biomarkers for biogeochemistry and microbial ecology. Rapid Commun. Mass Spectrom. 18, 617–628 (2004).

    CAS  PubMed  Google Scholar 

  51. Zhu, C. et al. Comprehensive glycerol ether lipid fingerprints through a novel reversed phase liquid chromatography–mass spectrometry protocol. Org. Geochem. 65, 53–62 (2013).

    CAS  Google Scholar 

  52. Huguet, C. et al. An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids. Org. Geochem. 37, 1036–1041 (2006).

    CAS  Google Scholar 

  53. Becker, K. W., Lipp, J. S., Zhu, C., Liu, X.-L. & Hinrichs, K.-U. An improved method for the analysis of archaeal and bacterial ether core lipids. Org. Geochem. 61, 34–44 (2013).

    CAS  Google Scholar 

  54. Pancost, R. D. et al. Archaeol as a methanogen biomarker in ombrotrophic bogs. Org. Geochem. 42, 1279–1287 (2011).

    CAS  Google Scholar 

  55. Zhou, Z., Pan, J., Wang, F., Gu, J.-D. & Li, M. Bathyarchaeota: globally distributed metabolic generalists in anoxic environments. FEMS Microbiol. Rev. 42, 639–655 (2018).

    CAS  PubMed  Google Scholar 

  56. Jorgensen, S. L. et al. Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge. Proc. Natl Acad. Sci. USA 109, E2846–E2855 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Yu, T., Liang, Q., Niu, M. & Wang, F. High occurrence of Bathyarchaeota (MCG) in the deep‐sea sediments of South China Sea quantified using newly designed PCR primers. Environ. Microbiol. Rep. 9, 374–382 (2017).

    CAS  PubMed  Google Scholar 

  58. Stoddard, S. F., Smith, B. J., Hein, R., Roller, B. R. & Schmidt, T. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res. 43, D593–D598 (2015).

    CAS  PubMed  Google Scholar 

  59. Hoshino, T. & Inagaki, F. Abundance and distribution of Archaea in the subseafloor sedimentary biosphere. ISME J. 13, 227–231 (2019).

    PubMed  Google Scholar 

  60. Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Google Scholar 

  62. Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Dong, L. et al. Mass spectrometry data for archaeal ether lipid identification in marine Bathyarchaeia. Zenodo https://doi.org/10.5281/zenodo.16742269 (2025).

  64. Dong, L. et al. Stable carbon isotope data from 13C-labelling experiments tracing carbon assimilation in marine Bathyarchaeia. Zenodo https://doi.org/10.5281/zenodo.16748030 (2025).

  65. Boron, W. F. Evaluating the role of carbonic anhydrases in the transport of HCO3-related species. Biochim. Biophys. Acta. 1804, 410–421 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank W. Wu for his insightful suggestions on stable isotope probing techniques, as well as L. Deng, S. Ding, H. Zhang and H. Hu for their valuable comments during the revision process. We also thank W. Zhang and Q. Luo at the State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, for their generous support with mass spectrometry analyses. This work was supported financially by the Natural Science Foundation of China (grants 42230401 to F.W. and 42472370 to L.D.), the Postdoctoral Fellowship Program (Grade B) of China Postdoctoral Science Foundation (GZB20240430 to J.H.), 2030 Project of Shanghai Jiao Tong University (grant WH510244001), Global Subseafloor Ecosystem and Sustainability (GSES) and the project ‘Ocean Negative Carbon Emission (ONCE)’.

Author information

Authors and Affiliations

Authors

Contributions

L.D. and F.W. designed the study, and K.-U.H. supervised the study thoroughly. L.D., Y.J., J.H., J.Z., T.Y., S.C., L.L., P.Z. and X.Z. performed the research. L.D., Y.J., J.H., J.Z., S.C., X.Z. and K.-U.H. analysed the data. L.D., Y.J., K.-U.H. and F.W. wrote the paper.

Corresponding author

Correspondence to Fengping Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Vincent Grossi, Bernhard Naafs and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Quantitative analysis of cellular lipid content in cultured samples.

Quantification of cellular core lipids content in isoprenoid glycerol dibiphytanyl glycerol tetraethers (IPL-derived CLs) following acid hydrolysis over a harvest time of 120 days. The dashed lines indicate the lower and upper bounds (0.7 and 1.5 fg/cell, respectively) for the estimated cellular lipid content derived from a cellular geometry model. Bathyarchaeia biomass was additionally quantified using quantitative PCR (qPCR).

Source data

Extended Data Fig. 2 Extracted mass chromatogram of core lipids.

The core lipids were derived from normal-phase UPLC-APCI-QTOF analysis of extract obtained from acid hydrolysis of Bathyarchaeia cells.

Source data

Extended Data Fig. 3 Archaeal community structure and core lipid composition following cell acid hydrolysis.

a, Abundance of Bathyarchaeia, estimated by 16S rRNA gene copy numbers after 30 days’ incubation. Data are presented as mean values ± SD (n = 3 biological replicates; independent culture bottles). b, Archaeal community composition at the phylum/class level (left) and Bathyarchaeia subgroup/genus level (right). The Bathyarchaeia community was primarily composed of Baizosediminiarchaeum (93.4%), with Baizomonas comprising 6.5%. “Others” refers to unclassified archaeal taxa. c, Composition of core lipids (CLs) released after acid hydrolysis of archaeal cells. The left bar shows the total distribution of major lipid classes—archaeol (AR), butanetriol dialkyl glycerol tetraethers (BDGTs), and glycerol dialkyl glycerol tetraethers (GDGTs). The right bar displays the relative proportions of individual BDGT (BDGT-0 to BDGT-2) and GDGT (GDGT-0 to GDGT-3) homologues.

Source data

Extended Data Fig. 4 Proposed carbon isotope fractionation and metabolic pathways in Bathyarchaeia.

This schematic highlight key carbon isotope fractionation processes and metabolic pathways involved in lipids synthesis by Bathyarchaeia. δ¹³C values and fractionation factors (ε) for different carbon pools and metabolites are shown. The primary carbon sources, dissolved inorganic carbon (DIC) and lignin, are utilization at an approximate ratio of 1:2. Fractionation factors between BP0 and DIC (εBP0/DIC), and BP0 and lignin (εBP0/Lignin) are -36.1‰ and -52.1‰, respectively. The pathways illustrated include demethylation (conversion of lignin to -CH₃-THMPT), acetyl-CoA formation (from acetate), the Wood-Ljungdahl (WL) pathway (conversion of CO₂ to acetyl-CoA via carbon monoxide dehydrogenase/acetyl-CoA synthase (CODH/ACS))11, and the role of carbonic anhydrase (CA) in HCO₃⁻ to CO₂ conversion65. This schematic emphasizes the contributions of DIC and lignin to lipid biosynthesis and highlights the isotope fractionation associated with these metabolic pathways.

Supplementary information

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, L., Jing, Y., Hou, J. et al. A dominant subgroup of marine Bathyarchaeia assimilates organic and inorganic carbon into unconventional membrane lipids. Nat Microbiol 10, 2579–2590 (2025). https://doi.org/10.1038/s41564-025-02121-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41564-025-02121-5

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology