Abstract
Wavefront shaping enables the targeted delivery of coherent light into random-scattering media, such as biological tissue, by the constructive interference of scattered waves. However, broadband waves have short coherence times, weakening the interference effect. Here we introduce a broadband deposition matrix that identifies a single input wavefront that maximizes the broadband energy delivered to an extended target deep inside a diffusive system. We experimentally demonstrate that long-range spatial and spectral correlations result in sixfold energy enhancement for targets containing 1,700 speckle grains and located at a depth of up to ten transport mean free paths, even when the coherence time is an order of magnitude shorter than the diffusion dwell time of light in the scattering sample. In the broadband (fast decoherence) limit, enhancement of energy delivery to extended targets becomes nearly independent of the target depth and dissipation. Our experiments, numerical simulations and analytic theory establish the fundamental limit for broadband energy delivery deep into a diffusive system, which has important consequences for practical applications.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
Data availability
Source data are provided with this paper. All other data supporting the findings in this study are available from the corresponding author upon reasonable request.
References
Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photon. 6, 283–292 (2012).
Rotter, S. & Gigan, S. Light fields in complex media: mesoscopic scattering meets wave control. Rev. Mod. Phys. 89, 015005 (2017).
Cao, H., Mosk, A. P. & Rotter, S. Shaping the propagation of light in complex media. Nat. Phys. 18, 994–1007 (2022).
Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007).
Yaqoob, Z., Psaltis, D., Feld, M. S. & Yang, C. Optical phase conjugation for turbidity suppression in biological samples. Nat. Photon. 2, 110–115 (2008).
Vellekoop, I. M., van Putten, E. G., Lagendijk, A. & Mosk, A. P. Demixing light paths inside disordered metamaterials. Opt. Express 16, 67–80 (2008).
Xu, X., Liu, H. & Wang, L. V. Time-reversed ultrasonically encoded optical focusing into scattering media. Nat. Photon. 5, 154–157 (2011).
Judkewitz, B., Wang, Y. M., Horstmeyer, R., Mathy, A. & Yang, C. Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE). Nat. Photon. 7, 300–305 (2013).
Horstmeyer, R., Ruan, H. & Yang, C. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photon. 9, 563–571 (2015).
Vellekoop, I. M. Feedback-based wavefront shaping. Opt. Express 23, 12189–12206 (2015).
Vellekoop, I. M. & Mosk, A. P. Universal optimal transmission of light through disordered materials. Phys. Rev. Lett. 101, 120601 (2008).
Popoff, S. M. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010).
Choi, W., Mosk, A. P., Park, Q. H. & Choi, W. Transmission eigenchannels in a disordered medium. Phys. Rev. B 83, 134207 (2011).
Kim, M. et al. Maximal energy transport through disordered media with the implementation of transmission eigenchannels. Nat. Photon. 6, 581–585 (2012).
Yu, H. et al. Measuring large optical transmission matrices of disordered media. Phys. Rev. Lett. 111, 153902 (2013).
Popoff, S. M., Goetschy, A., Liew, S. F., Stone, A. D. & Cao, H. Coherent control of total transmission of light through disordered media. Phys. Rev. Lett. 112, 133903 (2014).
Gérardin, B., Laurent, J., Derode, A., Prada, C. & Aubry, A. Full transmission and reflection of waves propagating through a maze of disorder. Phys. Rev. Lett. 113, 173901 (2014).
Davy, M., Shi, Z., Park, J., Tian, C. & Genack, A. Z. Universal structure of transmission eigenchannels inside opaque media. Nat. Commun. 6, 6893 (2015).
Hsu, C. W., Liew, S. F., Goetschy, A., Cao, H. & Stone, A. D. Correlation-enhanced control of wave focusing in disordered media. Nat. Phys. 13, 497–502 (2017).
Yılmaz, H., Hsu, C. W., Yamilov, A. & Cao, H. Transverse localization of transmission eigenchannels. Nat. Photon. 13, 352–358 (2019).
Bender, N., Yamilov, A., Yılmaz, H. & Cao, H. Fluctuations and correlations of transmission eigenchannels in diffusive media. Phys. Rev. Lett. 125, 165901 (2020).
Hsieh, C.-L., Pu, Y., Grange, R. & Psaltis, D. Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media. Opt. Express 18, 12283–12290 (2010).
Choi, Y. et al. Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium. Phys. Rev. Lett. 111, 243901 (2013).
Cheng, X. & Genack, A. Z. Focusing and energy deposition inside random media. Opt. Lett. 39, 6324–6327 (2014).
Chaigne, T. et al. Controlling light in scattering media non-invasively using the photoacoustic transmission matrix. Nat. Photon. 8, 58–64 (2014).
Liu, Y. et al. Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (true) light. Nat. Commun. 6, 5904 (2015).
Sarma, R., Yamilov, A. G., Petrenko, S., Bromberg, Y. & Cao, H. Control of energy density inside a disordered medium by coupling to open or closed channels. Phys. Rev. Lett. 117, 086803 (2016).
Badon, A. et al. Smart optical coherence tomography for ultra-deep imaging through highly scattering media. Sci. Adv. 2, e1600370 (2016).
Jeong, S. et al. Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering. Nat. Photon. 12, 277–283 (2018).
Katz, O., Ramaz, F., Gigan, S. & Fink, M. Controlling light in complex media beyond the acoustic diffraction-limit using the acousto-optic transmission matrix. Nat. Commun. 10, 717 (2019).
Durand, M., Popoff, S. M., Carminati, R. & Goetschy, A. Optimizing light storage in scattering media with the dwell-time operator. Phys. Rev. Lett. 123, 243901 (2019).
Boniface, A., Blochet, B., Dong, J. & Gigan, S. Noninvasive light focusing in scattering media using speckle variance optimization. Optica 6, 1381–1385 (2019).
Horodynski, M. et al. Optimal wave fields for micromanipulation in complex scattering environments. Nat. Photon. 14, 149–153 (2020).
Yang, J. et al. Focusing light inside live tissue using reversibly switchable bacterial phytochrome as a genetically encoded photochromic guide star. Sci. Adv. 5, eaay1211 (2019).
Boniface, A., Dong, J. & Gigan, S. Non-invasive focusing and imaging in scattering media with a fluorescence-based transmission matrix. Nat. Commun. 11, 6154 (2020).
Lambert, W., Cobus, L. A., Frappart, T., Fink, M. & Aubry, A. Distortion matrix approach for ultrasound imaging of random scattering media. Proc. Natl Acad. Sci. USA 117, 14645–14656 (2020).
Badon, A. et al. Distortion matrix concept for deep optical imaging in scattering media. Sci. Adv. 6, eaay7170 (2020).
Bouchet, D., Rotter, S. & Mosk, A. P. Maximum information states for coherent scattering measurements. Nat. Phys. 17, 564–568 (2021).
Lee, Y.-R. et al. Wave propagation dynamics inside a complex scattering medium by the temporal control of backscattered waves. Optica 10, 569–577 (2023).
Bender, N. et al. Depth-targeted energy delivery deep inside scattering media. Nat. Phys. 18, 309–315 (2022).
van Beijnum, F., van Putten, E. G., Lagendijk, A. & Mosk, A. P. Frequency bandwidth of light focused through turbid media. Opt. Lett. 36, 373–375 (2011).
Paudel, H. P., Stockbridge, C., Mertz, J. & Bifano, T. Focusing polychromatic light through strongly scattering media. Opt. Express 21, 17299–17308 (2013).
Andreoli, D. et al. Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix. Sci. Rep. 5, 10347 (2015).
Mounaix, M. et al. Spatiotemporal coherent control of light through a multiple scattering medium with the multispectral transmission matrix. Phys. Rev. Lett. 116, 253901 (2016).
Mounaix, M., de Aguiar, H. B. & Gigan, S. Temporal recompression through a scattering medium via a broadband transmission matrix. Optica 4, 1289–1292 (2017).
Hsu, C. W., Goetschy, A., Bromberg, Y., Stone, A. D. & Cao, H. Broadband coherent enhancement of transmission and absorption in disordered media. Phys. Rev. Lett. 115, 223901 (2015).
Liew, S. F., Popoff, S. M., Mosk, A. P., Vos, W. L. & Cao, H. Transmission channels for light in absorbing random media: from diffusive to ballistic-like transport. Phys. Rev. B 89, 224202 (2014).
Liew, S. F. & Cao, H. Modification of light transmission channels by inhomogeneous absorption in random media. Opt. Express 23, 11043–11053 (2015).
Sarma, R., Yamilov, A., Liew, S. F., Guy, M. & Cao, H. Control of mesoscopic transport by modifying transmission channels in opaque media. Phys. Rev. B 92, 214206 (2015).
Yamilov, A., Petrenko, S., Sarma, R. & Cao, H. Shape dependence of transmission, reflection, and absorption eigenvalue densities in disordered waveguides with dissipation. Phys. Rev. B 93, 100201 (2016).
Sarma, R., Yamilov, A., Neupane, P. & Cao, H. Using geometry to manipulate long-range correlation of light inside disordered media. Phys. Rev. B 92, 180203 (2015).
Stephen, M. J. & Cwilich, G. Intensity correlation functions and fluctuations in light scattered from a random medium. Phys. Rev. Lett. 59, 285 (1987).
Berkovits, R. & Feng, S. Correlations in coherent multiple scattering. Phys. Rep. 238, 135–172 (1994).
Groth, C. W., Wimmer, M., Akhmerov, A. R. & Waintal, X. Kwant: a software package for quantum transport. New J. Phys. 16, 063065 (2014).
Goetschy, A. & Stone, A. D. Filtering random matrices: the effect of incomplete channel control in multiple scattering. Phys. Rev. Lett. 111, 063901 (2013).
Yamilov, A. G. et al. Position-dependent diffusion of light in disordered waveguides. Phys. Rev. Lett. 112, 023904 (2014).
Hong, P., Ojambati, O. S., Lagendijk, A., Mosk, A. P. & Vos, W. L. Three-dimensional spatially resolved optical energy density enhanced by wavefront shaping. Optica 5, 844–849 (2018).
Uppu, R., Adhikary, M., Harteveld, C. A. & Vos, W. L. Spatially shaping waves to penetrate deep inside a forbidden gap. Phys. Rev. Lett. 126, 177402 (2021).
Yu, H. et al. Recent advances in wavefront shaping techniques for biomedical applications. Curr. Appl. Phys. 15, 632–641 (2015).
Yoon, S. et al. Deep optical imaging within complex scattering media. Nat. Rev. Phys. 2, 141–158 (2020).
Fenno, L., Yizhar, O. & Deisseroth, K. The development and application of optogenetics. Annu. Rev. Neurosci. 34, 389–412 (2011).
Yoon, J. et al. Optogenetic control of cell signaling pathway through scattering skull using wavefront shaping. Sci. Rep. 5, 13289 (2015).
Pégard, N. C. et al. Three-dimensional scanless holographic optogenetics with temporal focusing (3D-SHOT). Nat. Commun. 8, 1228 (2017).
Ruan, H. et al. Deep tissue optical focusing and optogenetic modulation with time-reversed ultrasonically encoded light. Sci. Adv. 3, eaao5520 (2017).
Yanik, M. F. et al. Neurosurgery: functional regeneration after laser axotomy. Nature 432, 822 (2004).
Pernot, M. et al. In vivo transcranial brain surgery with an ultrasonic time reversal mirror. J. Neurosurg. 106, 1061–1066 (2007).
Bender, N. et al. Coherent enhancement of optical remission in diffusive media. Proc. Natl Acad. Sci. USA 119, e2207089119 (2022).
Srivastava, A. & Klassen, E. Monte Carlo extrinsic estimators of manifold-valued parameters. IEEE Trans. Signal Process. 50, 299–308 (2002).
Acknowledgements
We thank C.-W. Chen, K. Kim, S. Han, L. Shaughnessy, P. Miao, S. Halladay and Z. Lai for valuable discussions. This work is supported partly by the National Science Foundation (NSF) under grant nos. DMR-1905465 (R.M. and H.C.) and no. DMR-1905442 (A.Y.) and the Office of Naval Research (ONR) under grant no. N00014-221-1-2026 (H.C.). It has also received support under the program Investissements d’Avenir launched by the French Government (A.G.).
Author information
Authors and Affiliations
Contributions
R.M. and N.B. performed the experiments. R.M. analysed the data. N.B. fabricated the samples. A.G. developed the analytic theory. C.W.H. contributed to the theoretical analysis. H.Y. contributed to the experimental analysis. R.M. and A.Y. performed the numerical simulations. H.C. initiated the project and supervised the research. All authors contributed to the interpretation of the results. R.M. and A.G. prepared the paper, H.C. edited it and all authors provided feedback.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Photonics thanks Jacopo Bertolotti, Roarke Horstmeyer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–10 and Sections I–VII.
Source data
Source Data Fig. 2
Statistical source data.
Source Data Fig. 3
Statistical source data.
Source Data Fig. 4
Statistical source data.
Source Data Fig. 5
Statistical source data.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
McIntosh, R., Goetschy, A., Bender, N. et al. Delivering broadband light deep inside diffusive media. Nat. Photon. 18, 744–750 (2024). https://doi.org/10.1038/s41566-024-01446-7
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41566-024-01446-7
This article is cited by
-
Optical focusing into scattering media via iterative time reversal guided by absorption nonlinearity
Nature Communications (2025)
-
Deep focusing with broadband light
Nature Photonics (2024)