Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nonlinear optical colloidal metacrystals

Abstract

Atomic and molecular structure inversion symmetry breaking in naturally occurring crystals dictate their physical properties including nonlinear optical (NLO) effects, piezo- or ferroelectricity, and non-reciprocal charge transport behaviour. With metamaterials composed of nanoscale building blocks (that is, meta-atoms), the spatial inversion symmetry violation on planar surfaces leads to spin-controlled photonics as well as NLO metasurfaces. Synthetically, low-symmetry 3D metacrystals can be synthesized, but NLO behaviour has not been identified so far (for example, harmonic generations). Herein we show how DNA-mediated assembly of octahedron-shaped plasmonic gold nanocrystals can be used to design and deliberately synthesize non-centrosymmetric and centrosymmetric colloidal crystals. Importantly, while the centrosymmetric structures do not exhibit substantial second-harmonic generation, the non-centrosymmetric crystals do—a consequence of the asymmetric distribution of localized electric fields in plasmonic hotspots. Moreover, this non-centrosymmetric NLO metacrystal represents a 3D NLO metamaterial being developed via a bottom-up approach, exhibiting a maximum second-harmonic generation conversion efficiency of 10−9 to surpass the efficiencies observed in the majority of plasmonic 2D metasurfaces. Finally, the DNA-loading density on the particle building blocks can be used to toggle between the centrosymmetric and non-centrosymmetric phases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design of DNA-programmed colloidal crystal growth with controllable symmetries and characterization of these structures by SEM.
Fig. 2: Second-harmonic generation experiments on the non-centrosymmetric colloidal crystal.
Fig. 3: Simulated electric field maps of the non-centrosymmetric superlattice.
Fig. 4: Comparison of the SHG responses of three superlattices with different symmetries.
Fig. 5: Overview of the SHG conversion efficiencies and the effective χ(2) of the NLO metacrystal.

Similar content being viewed by others

Data availability

All the data supporting the findings of this study are available within this Article and its Supplementary Information. Any additional information can be obtained from the corresponding authors on reasonable request. Source Data are provided with this paper.

References

  1. Prelog, V. Chirality in chemistry. Science 193, 17–24 (1976).

    Article  ADS  Google Scholar 

  2. Tang, Y. & Cohen, A. E. Optical chirality and its interaction with matter. Phys. Rev. Lett. 104, 163901 (2010).

    Article  ADS  Google Scholar 

  3. Ma, W. et al. Chiral inorganic nanostructures. Chem. Rev. 117, 8041–8093 (2017).

    Article  ADS  Google Scholar 

  4. Verbiest, T. et al. Strong enhancement of nonlinear optical properties through supramolecular chirality. Science 282, 913–915 (1998).

    Article  ADS  MATH  Google Scholar 

  5. Kenzelmann, M. et al. Magnetic inversion symmetry breaking and ferroelectricity in TbMnO3. Phys. Rev. Lett. 95, 87206 (2005).

    Article  ADS  Google Scholar 

  6. Yao, W., Xiao, D. & Niu, Q. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 77, 235406 (2008).

    Article  ADS  Google Scholar 

  7. Boyd, R. W. Nonlinear Optics 3rd edn (Academic, 2008).

  8. Wang, J.-Q. et al. Synthetic five-wave mixing in an integrated microcavity for visible-telecom entanglement generation. Nat. Commun. 13, 6223 (2022).

    Article  ADS  MATH  Google Scholar 

  9. Berger, V. Nonlinear photonic crystals. Phys. Rev. Lett. 81, 4136–4139 (1998).

    Article  ADS  MATH  Google Scholar 

  10. Lu, X., Moille, G., Rao, A., Westly, D. A. & Srinivasan, K. Efficient photoinduced second-harmonic generation in silicon nitride photonics. Nat. Photon. 15, 131–136 (2021).

    Article  ADS  Google Scholar 

  11. Corn, R. M. & Higgins, D. A. Optical second harmonic generation as a probe of surface chemistry. Chem. Rev. 94, 107–125 (1994).

    Article  MATH  Google Scholar 

  12. Yamamoto, S. et al. Element selectivity in second-harmonic generation of GaFeO3 by a soft-X-ray free-electron laser. Phys. Rev. Lett. 120, 223902 (2018).

    Article  ADS  MATH  Google Scholar 

  13. Campagnola, P. J. & Loew, L. M. Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat. Biotechnol. 21, 1356–1360 (2003).

    Article  MATH  Google Scholar 

  14. Chen, X., Nadiarynkh, O., Plotnikov, S. & Campagnola, P. J. Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat. Protoc. 7, 654–669 (2012).

    Article  Google Scholar 

  15. Franken, P. A., Hill, A. E., Peters, C. W. & Weinreich, G. Generation of optical harmonics. Phys. Rev. Lett. 7, 118 (1961).

  16. Zhang, Y., Grady, N. K., Ayala-Orozco, C. & Halas, N. J. Three-dimensional nanostructures as highly efficient generators of second harmonic light. Nano Lett. 11, 5519–5523 (2011).

    Article  ADS  MATH  Google Scholar 

  17. Li, G., Zhang, S. & Zentgraf, T. Nonlinear photonic metasurfaces. Nat. Rev. Mater. 2, 17010 (2017).

    Article  ADS  MATH  Google Scholar 

  18. Kauranen, M. & Zayats, A. V. Nonlinear plasmonics. Nat. Photon. 6, 737–748 (2012).

    Article  ADS  MATH  Google Scholar 

  19. Canfield, B. K. et al. Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers. Nano Lett. 7, 1251–1255 (2007).

    Article  ADS  MATH  Google Scholar 

  20. Suchowski, H. et al. Phase mismatch–free nonlinear propagation in optical zero-index materials. Science. 342, 1223–1226 (2013).

    Article  ADS  MATH  Google Scholar 

  21. Laramy, C. R., O’Brien, M. N. & Mirkin, C. A. Crystal engineering with DNA. Nat. Rev. Mater. 4, 201–224 (2019).

    Article  ADS  MATH  Google Scholar 

  22. Wang, S. et al. The emergence of valency in colloidal crystals through electron equivalents. Nat. Mater. 21, 580–587 (2022).

    Article  ADS  MATH  Google Scholar 

  23. Macfarlane, R. J., O’Brien, M. N., Petrosko, S. H. & Mirkin, C. A. Nucleic acid-modified nanostructures as programmable atom equivalents: forging a new “table of elements”. Angew. Chem. Int. Ed. 52, 5688–5698 (2013).

    Article  MATH  Google Scholar 

  24. Macfarlane, R. J. et al. Nanoparticle superlattice engineering with DNA. Science 334, 204–208 (2011).

    Article  ADS  MATH  Google Scholar 

  25. Macfarlane, R. J. et al. Importance of the DNA “bond” in programmable nanoparticle crystallization. Proc. Natl Acad. Sci. USA 111, 14995–15000 (2014).

    Article  ADS  MATH  Google Scholar 

  26. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    Article  ADS  Google Scholar 

  27. Samanta, D., Zhou, W., Ebrahimi, S. B., Petrosko, S. H. & Mirkin, C. A. Programmable matter: the nanoparticle atom and DNA bond. Adv. Mater. 34, 2107875 (2022).

    Article  Google Scholar 

  28. Thaner, R. V. et al. The significance of multivalent bonding motifs and “bond order” in DNA-directed nanoparticle crystallization. J. Am. Chem. Soc. 138, 6119–6122 (2016).

    Article  MATH  Google Scholar 

  29. Zhou, W. et al. Space-tiled colloidal crystals from DNA-forced shape-complementary polyhedra pairing. Science 383, 312–319 (2024).

    Article  ADS  MATH  Google Scholar 

  30. Li, Y. et al. Open-channel metal particle superlattices. Nature 611, 695–701 (2022).

    Article  ADS  MATH  Google Scholar 

  31. Kim, S. et al. Mie-resonant three-dimensional metacrystals. Nano Lett. 20, 8096–8101 (2020).

    Article  ADS  MATH  Google Scholar 

  32. Zhou, W. et al. Device-quality, reconfigurable metamaterials from shape-directed nanocrystal assembly. Proc. Natl Acad. Sci. USA 117, 21052–21057 (2020).

    Article  ADS  Google Scholar 

  33. Li, Y. et al. Monolayer plasmonic nanoframes as large-area, broadband metasurface absorbers. Small 18, 2201171 (2022).

    Article  Google Scholar 

  34. Lin, Q.-Y. et al. Strong coupling between plasmonic gap modes and photonic lattice modes in DNA-assembled gold nanocube arrays. Nano Lett. 15, 4699–4703 (2015).

    Article  ADS  MATH  Google Scholar 

  35. Park, D. J. et al. Plasmonic photonic crystals realized through DNA-programmable assembly. Proc. Natl Acad. Sci. USA 112, 977–981 (2015).

    Article  ADS  MATH  Google Scholar 

  36. Auyeung, E., Macfarlane, R. J., Choi, C. H. J., Cutler, J. I. & Mirkin, C. A. Transitioning DNA-engineered nanoparticle superlattices from solution to the solid state. Adv. Mater. 24, 5181–5186 (2012).

    Article  Google Scholar 

  37. Henzie, J., Grünwald, M., Widmer-Cooper, A., Geissler, P. L. & Yang, P. Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. Nat. Mater. 11, 131–137 (2012).

    Article  ADS  Google Scholar 

  38. Bozhevolnyi, S. I., Beermann, J. & Coello, V. Direct observation of localized second-harmonic enhancement in random metal nanostructures. Phys. Rev. Lett. 90, 197403 (2003).

    Article  ADS  MATH  Google Scholar 

  39. Celebrano, M. et al. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nat. Nanotechnol. 10, 412–417 (2015).

    Article  ADS  Google Scholar 

  40. Zhang, S. et al. Pronounced Fano resonance in single gold split nanodisks with 15 nm split gaps for intensive second harmonic generation. ACS Nano 10, 11105–11114 (2016).

    Article  MATH  Google Scholar 

  41. Klein, M. W., Wegener, M., Feth, N. & Linden, S. Experiments on second- and third-harmonic generation from magnetic metamaterials: erratum. Opt. Express 16, 8055 (2008).

    Article  ADS  MATH  Google Scholar 

  42. Feth, N. et al. Second-harmonic generation from complementary split-ring resonators. Opt. Lett. 33, 1975–1977 (2008).

    Article  ADS  MATH  Google Scholar 

  43. O’Brien, M. N., Jones, M. R., Brown, K. A. & Mirkin, C. A. Universal noble metal nanoparticle seeds realized through iterative reductive growth and oxidative dissolution reactions. J. Am. Chem. Soc. 136, 7603–7606 (2014).

    Article  Google Scholar 

  44. Rasband, W. S. ImageJ (US National Institutes of Health, 1997–2018); https://imagej.net/ij/

  45. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  Google Scholar 

  46. Kim, Y. & Vogel, S. S. Measuring two-photon microscopy ultrafast laser pulse duration at the sample plane using time-correlated single-photon counting. J. Biomed. Opt. 25, 14516 (2020).

    Article  Google Scholar 

  47. Sullivan, D. M. Electromagnetic Simulation Using the FDTD Method (John Wiley & Sons, 2013).

  48. Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    Article  ADS  MATH  Google Scholar 

  49. Palik, E. D. Handbook of Optical Constants of Solids Vol. 3 (Academic, 1998).

Download references

Acknowledgements

We thank J. Orbeck for providing editorial input, and R. Chan, K. Landy, Z. Li and K. Gibson for technical help and fruitful discussions. We also thank M. Hersam for supporting the access to the laser equipment. This material is based on work supported by the Air Force Office of Scientific Research award FA9550-22-1-0300 (nanocrystal synthesis and assembly, optical simulation); the Center for Bio-Inspired Energy Science, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences award DE-SC0000989 (DNA functionalization); an Army Research Office grant W911NF-23-1-0141 (SEM characterizations); and the Sherman Fairchild Foundation (SHG measurements). This work made use of the EPIC facility (NUANCE Center-Northwestern University), which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-2025633); the MRSEC program (NSF DMR-1121262) at the Materials Research Center; the International Institute for Nanotechnology (IIN); and the State of Illinois, through the IIN.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and C.A.M. conceived the idea. Y.Z. performed the synthesis and characterization of colloidal crystals with the help from W.Z. and Y.L. D.D.X. and Y.Z. designed and performed the SHG experiments. I.T. performed the optical simulation. R.L.A. conducted pulse width measurement experiments. C.A.M. and K.A. supervised the project. Y.Z. analysed the data and wrote the initial draft. All authors contributed to interpreting the data and writing or commenting on the manuscript.

Corresponding authors

Correspondence to Koray Aydin or Chad A. Mirkin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Huigao Duan, Hui Zhao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Sections 1–4, Tables 1–10 and Figs. 1–26.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Xu, D.D., Tanriover, I. et al. Nonlinear optical colloidal metacrystals. Nat. Photon. 19, 20–27 (2025). https://doi.org/10.1038/s41566-024-01558-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-024-01558-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing