Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Super-resolution optical fluctuation imaging

Abstract

We present a comprehensive review of super-resolution optical fluctuation imaging (SOFI), a robust technique that leverages temporal fluctuations in fluorescence intensity to achieve super-resolution imaging without the need for single-molecule localization. The Review starts with a historical overview of super-resolution microscopy techniques, and then focuses on SOFI’s core principle—the analysis of intensity fluctuations using cumulants to improve spatial resolution. The paper discusses technical challenges, such as photobleaching, blinking kinetics and pixel size limitations, as well as proposing solutions like Fourier upsampling and balanced SOFI to mitigate these issues. Additionally, we discuss potential advancements in the field, including the integration of SOFI with other super-resolution modalities like structured illumination microscopy and image scanning microscopy, and the application of SOFI in cryo-fluorescence microscopy and quantum emitter-based imaging. This paper aims to serve as an essential resource for researchers interested in utilizing SOFI for high-resolution imaging in diverse biological applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principle of SOFI.
Fig. 2: OTF and PSF of SOFI.
Fig. 3: Pixel size problem.

Similar content being viewed by others

References

  1. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    ADS  Google Scholar 

  2. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    ADS  MATH  Google Scholar 

  3. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006).

    Google Scholar 

  4. Heilemann, M. et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Ed. 47, 6172–6176 (2008).

    MATH  Google Scholar 

  5. Sharonov, A. & Hochstrasser, R. M. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc. Natl Acad. Sci. USA 103, 18911–18916 (2006).

    ADS  MATH  Google Scholar 

  6. Jungmann, R. et al. Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett. 10, 4756–4761 (2010).

    ADS  MATH  Google Scholar 

  7. Schmidt, R. et al. Minflux: low-light nanoscopy with molecular resolution. Nat. Methods 13, 339–342 (2016).

    MATH  Google Scholar 

  8. Balzarotti, F. et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355, 606–612 (2017).

    ADS  MATH  Google Scholar 

  9. Gwosch, K. et al. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat. Methods 17, 217–224 (2020).

    Google Scholar 

  10. Dertinger, T., Colyer, R., Iyer, G., Weiss, S. & Enderlein, J. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc. Natl Acad. Sci. USA 106, 22287–22292 (2009).

    ADS  Google Scholar 

  11. Dertinger, T., Heilemann, M., Vogel, R., Sauer, M. & Weiss, S. Super-resolution optical fluctuation imaging with organic dyes. Angew. Chem. Int. Ed. 49, 9441–9443 (2010).

    Google Scholar 

  12. Duwé, S., Moeyaert, B. & Dedecker, P. Diffraction-unlimited fluorescence microscopy of living biological samples using pcSOFI. Curr. Protoc. Chem. Biol. 7, 27–41 (2015).

    MATH  Google Scholar 

  13. Duwé, S., Vandenberg, W. & Dedecker, P. Live-cell monochromatic dual-label sub-diffraction microscopy by mt-pcSOFI. Chem. Commun. 53, 7242–7245 (2017).

    Google Scholar 

  14. Chizhik, A. M. et al. Super-resolution optical fluctuation bio-imaging with dual-color carbon nanodots. Nano Lett. 16, 237–242 (2016).

    ADS  Google Scholar 

  15. Glogger, M., Spahn, C., Enderlein, J. & Heilemann, M. Multi-color, bleaching-resistant super-resolution optical fluctuation imaging with oligonucleotide-based exchangeable fluorophores. Angew. Chem. Int. Ed. 133, 6380–6383 (2021).

    ADS  Google Scholar 

  16. Gustafsson, M. G. Extended resolution fluorescence microscopy. Curr. Opin. Struct. Biol. 9, 627–628 (1999).

    MATH  Google Scholar 

  17. Heintzmann, R. & Huser, T. Super-resolution structured illumination microscopy. Chem. Rev. 117, 13890–13908 (2017).

    Google Scholar 

  18. Sheppard, C. J. Super-resolution in confocal imaging. Optik 80, 53–54 (1988).

    MATH  Google Scholar 

  19. Müller, C. B. & Enderlein, J. Image scanning microscopy. Phys. Rev. Lett. 104, 198101 (2010).

    ADS  Google Scholar 

  20. Geissbuehler, S. et al. Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI). Opt. Nano. 1, 4 (2012).

    Google Scholar 

  21. Girsault, A. et al. SOFI simulation tool: a software package for simulating and testing super-resolution optical fluctuation imaging. PLoS ONE 11, e0161602 (2016).

  22. Miao, Y., Weiss, S. & Yi, X. PySOFI: an open source Python package for SOFI. Biophys. Rep. 2, 100052 (2022).

  23. Stallinga, S., Radmacher, N., Delon, A. & Enderlein, J. Optimal transfer functions for bandwidth-limited imaging. Phys. Rev. Res. 4, 023003 (2022).

    Google Scholar 

  24. Radmacher, N. et al. Doubling the resolution of fluorescence-lifetime single-molecule localization microscopy with image scanning microscopy. Nat. Photon. https://doi.org/10.1038/s41566-024-01481-4 (2024).

    Article  MATH  Google Scholar 

  25. Fazel, M. et al. Fluorescence microscopy: a statistics-optics perspective. Rev. Mod. Phys. 96, 025003 (2024).

    ADS  MathSciNet  MATH  Google Scholar 

  26. Smith, C. S. et al. Structured illumination microscopy with noise-controlled image reconstructions. Nat. Methods 18, 821–828 (2021).

    MATH  Google Scholar 

  27. Rieger, B., Droste, I., Gerritsma, F., Brink, T. T. & Stallinga, S. Single image Fourier ring correlation. Opt. Express 32, 21767–21782 (2024).

    ADS  Google Scholar 

  28. Bierbuesse, F., Gielen, V., Vandenberg, W. & Dedecker, P. Model-free pixelation correction in SOFI imaging. OSA Contin. 4, 77–86 (2021).

    Google Scholar 

  29. Stein, S. C., Huss, A., Hähnel, D., Gregor, I. & Enderlein, J. Fourier interpolation stochastic optical fluctuation imaging. Opt. Express 23, 16154–16163 (2015).

    ADS  Google Scholar 

  30. Deschout, H. et al. Complementarity of PALM and SOFI for super-resolution live-cell imaging of focal adhesions. Nat. Commun. 7, 13693 (2016).

    ADS  MATH  Google Scholar 

  31. Schidorsky, S. et al. Synergizing superresolution optical fluctuation imaging with single molecule localization microscopy. Methods Appl. Fluoresc. 6, 045008 (2018).

    Google Scholar 

  32. Dertinger, T., Colyer, R., Vogel, R., Enderlein, J. & Weiss, S. Achieving increased resolution and more pixels with superresolution optical fluctuation imaging (SOFI). Opt. Express 18, 18875–18885 (2010).

    ADS  Google Scholar 

  33. Dertinger, T., Xu, J., Naini, O., Vogel, R. & Weiss, S. SOFI-based 3D superresolution sectioning with a widefield microscope. Opt. Nano. 1, 2 (2012).

    Google Scholar 

  34. Geissbuehler, S. et al. Live-cell multiplane three-dimensional super-resolution optical fluctuation imaging. Nat. Commun. 5, 5830 (2014).

    ADS  MATH  Google Scholar 

  35. Descloux, A. et al. Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy. Nat. Photon. 12, 165–172 (2018).

    ADS  MATH  Google Scholar 

  36. Grußmayer, K., Lukes, T., Lasser, T. & Radenovic, A. Self-blinking dyes unlock high-order and multiplane super-resolution optical fluctuation imaging. ACS Nano 14, 9156–9165 (2020).

    Google Scholar 

  37. Purohit, A. et al. Spatio-temporal correlation super-resolution optical fluctuation imaging. Eur. Phys. Lett. 125, 20005 (2019).

    ADS  Google Scholar 

  38. Pavani, S. R. P. et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc. Natl Acad. Sci. USA 106, 2995–2999 (2009).

    ADS  MATH  Google Scholar 

  39. Zhang, X. et al. Development of a reversibly switchable fluorescent protein for super-resolution optical fluctuation imaging (SOFI). ACS Nano 9, 2659–2667 (2015).

    ADS  MATH  Google Scholar 

  40. Liu, Z. et al. Narrow-band polymer dots with pronounced fluorescence fluctuations for dual-color super-resolution imaging. Nanoscale 12, 7522–7526 (2020).

    MATH  Google Scholar 

  41. Li, W., Kaminski Schierle, G. S., Lei, B., Liu, Y. & Kaminski, C. F. Fluorescent nanoparticles for super-resolution imaging. Chem. Rev. 122, 12495–12543 (2022).

    MATH  Google Scholar 

  42. Zeng, Z. et al. Fast super-resolution imaging with ultra-high labeling density achieved by joint tagging super-resolution optical fluctuation imaging. Sci. Rep. 5, 8359 (2015).

    MATH  Google Scholar 

  43. Yi, X. & Weiss, S. Cusp-artifacts in high order superresolution optical fluctuation imaging. Biomed. Opt. Express 11, 554 (2020).

    MATH  Google Scholar 

  44. Eynde, R. V. D. et al. Quantitative comparison of camera technologies for cost-effective super-resolution optical fluctuation imaging (SOFI). J. Phys. Photon. 1, 044001 (2019).

    MATH  Google Scholar 

  45. Xue, F. et al. SOGO-SOFI, light-modulated super-resolution optical fluctuation imaging using only 20 raw frames for high-fidelity reconstruction. Fundam. Res. https://doi.org/10.1016/j.fmre.2023.03.007 (2023).

    Article  Google Scholar 

  46. Peeters, W. et al. Correcting for photodestruction in super-resolution optical fluctuation imaging. Sci. Rep. 7, 10470 (2017).

    ADS  MATH  Google Scholar 

  47. Jungmann, R. et al. Quantitative super-resolution imaging with qPAINT. Nat. Methods 13, 439–442 (2016).

    MATH  Google Scholar 

  48. Kompa, J. et al. Exchangeable HaloTag ligands for super-resolution fluorescence microscopy. J. Am. Chem. Soc. 145, 3075–3083 (2023).

    MATH  Google Scholar 

  49. Hugelier, S. et al. Smoothness correction for better SOFI imaging. Sci. Rep. 11, 7569 (2021).

    ADS  MATH  Google Scholar 

  50. Brutkowski, W., Dziob, D. & Bernas, T. Increasing microscopy resolution with photobleaching and intensity cumulant analysis. Microsc. Res. Tech. 78, 958–968 (2015).

    Google Scholar 

  51. Vandenberg, W., & Dedecker, P. Effect of probe diffusion on the SOFI imaging accuracy. Sci. Rep. 7, 44665 (2017).

    ADS  MATH  Google Scholar 

  52. Vandenberg, W. et al. Model-free uncertainty estimation in stochastical optical fluctuation imaging (SOFI) leads to a doubled temporal resolution. Biomed. Opt. Express 7, 467–480 (2016).

    MATH  Google Scholar 

  53. Wang, X., Chen, D., Yu, B. & Niu, H. Statistical precision in super-resolution optical fluctuation imaging. Appl. Opt. 55, 7911–7916 (2016).

    Google Scholar 

  54. Cevoli, D. et al. Design of experiments for the optimization of SOFI super-resolution microscopy imaging. Biomed. Opt. Express 12, 2617–2630 (2021).

    MATH  Google Scholar 

  55. Kisley, L. et al. Characterization of porous materials by fluorescence correlation spectroscopy super-resolution optical fluctuation imaging. ACS Nano 9, 9158–9166 (2015).

    MATH  Google Scholar 

  56. Chatterjee, S., Kramer, S. N., Wellnitz, B., Kim, A. & Kisley, L. Spatially resolving size effects on diffusivity in nanoporous extracellular matrix-like materials with fluorescence correlation spectroscopy super-resolution optical fluctuation imaging. J. Phys. Chem. B 127, 4430–4440 (2023).

    MATH  Google Scholar 

  57. Lukeš, T. et al. Quantifying protein densities on cell membranes using super-resolution optical fluctuation imaging. Nat. Commun. 8, 1731 (2017).

    ADS  MATH  Google Scholar 

  58. Hertel, F., Mo, G. C. H., Duwé, S., Dedecker, P. & Zhang, J. RefSOFI for mapping nanoscale organization of protein-protein interactions in living cells. Cell Rep. 14, 390–400 (2016).

    Google Scholar 

  59. Jiang, S. et al. Enhanced SOFI algorithm achieved with modified optical fluctuating signal extraction. Opt. Express 24, 3037–3045 (2016).

    ADS  MATH  Google Scholar 

  60. Zou, L., Zhang, S., Wang, B. & Tan, J. High-order super-resolution optical fluctuation imaging based on low-pass denoising. Opt. Lett. 43, 707–710 (2018).

    MATH  Google Scholar 

  61. Zhao, W. et al. Enhanced detection of fluorescence fluctuations for high-throughput super-resolution imaging. Nat. Photon. 17, 806–813 (2023).

    ADS  MATH  Google Scholar 

  62. Grußmayer, K. S. et al. Spectral cross-cumulants for multicolor super-resolved SOFI imaging. Nat. Commun. 11, 3023 (2020).

    ADS  MATH  Google Scholar 

  63. Zhao, G., Zheng, C., Kuang, C. & Liu, X. Resolution-enhanced SOFI via structured illumination. Opt. Lett. 42, 3956–3959 (2017).

    Google Scholar 

  64. Descloux, A. C. et al. Experimental combination of super-resolution optical fluctuation imaging with structured illumination microscopy for large fields-of-view. ACS Photon. 8, 2440–2449 (2021).

    MATH  Google Scholar 

  65. Sroda, A. et al. SOFISM: super-resolution optical fluctuation image scanning microscopy. Optica 7, 1308–1316 (2020).

    ADS  MATH  Google Scholar 

  66. Choi, Y. et al. Wide-field super-resolution optical fluctuation imaging through dynamic near-field speckle illumination. Nano Lett. 22, 2194–2201 (2022).

    ADS  MATH  Google Scholar 

  67. Schwartz, O. et al. Superresolution microscopy with quantum emitters. Nano Lett. 13, 5832–5836 (2013).

    ADS  MATH  Google Scholar 

  68. Israel, Y., Tenne, R., Oron, D. & Silberberg, Y. Quantum correlation enhanced super-resolution localization microscopy enabled by a fiber bundle camera. Nat. Commun. 8, 14786 (2017).

    ADS  MATH  Google Scholar 

  69. Tenne, R. et al. Super-resolution enhancement by quantum image scanning microscopy. Nat. Photon. 13, 116–122 (2019).

    ADS  Google Scholar 

  70. Lubin, R., Antolovic, I. M., Charbon, E., Bruschini, C. & Oron, D. Quantum correlation measurement with single photon avalanche diode arrays. Opt. Express 27, 32863–32882 (2019).

    ADS  Google Scholar 

  71. Rossman, U. et al. Rapid quantum image scanning microscopy by joint sparse reconstruction. Optica 6, 1290–1296 (2019).

    ADS  MATH  Google Scholar 

  72. Weisenburger, S. et al. Cryogenic colocalization microscopy for nanometer-distance measurements. ChemPhysChem 15, 763–770 (2014).

    MATH  Google Scholar 

  73. Weisenburger, S. et al. Cryogenic optical localization provides 3D protein structure data with angstrom resolution. Nat. Methods 14, 141–144 (2017).

    Google Scholar 

  74. Böning, D., Wieser, F.-F. & Sandoghdar, V. Polarization-encoded colocalization microscopy at cryogenic temperatures. ACS Photon. 8, 194–201 (2021).

    Google Scholar 

  75. Perez, D. et al. Identification and demonstration of roGFP2 as an environmental sensor for cryogenic correlative light and electron microscopy. J. Struct. Biol. 214, 107881 (2022).

    MATH  Google Scholar 

  76. Sartor, A. M., Dahlberg, P. D., Perez, D. & Moerner, W. E. Characterization of mApple as a red fluorescent protein for cryogenic single-molecule imaging with turn-off and turn-on active control mechanisms. J. Phys. Chem. B 127, 2690–2700 (2023).

    Google Scholar 

  77. Moser, F. et al. Cryo-SOFI enabling low-dose super-resolution correlative light and electron cryo-microscopy. Proc. Natl Acad. Sci. USA 116, 4804–4809 (2019).

    ADS  MATH  Google Scholar 

  78. Gustafsson, N. et al. Fast live-cell conventional fluorophore nanoscopy with ImageJ through superresolution radial fluctuations. Nat. Commun. 7, 12471 (2016).

    ADS  MATH  Google Scholar 

  79. Vandenberg, W., Leutenegger, M., Duwé, S. & Dedecker, P. An extended quantitative model for super-resolution optical fluctuation imaging (SOFI). Opt. Express 27, 25749–25766 (2019).

    ADS  Google Scholar 

  80. Han, Y. et al. Ultrafast, universal super-resolution radial fluctuations (SRRF) algorithm for live-cell super-resolution microscopy. Opt. Express 27, 38337–38348 (2019).

    ADS  Google Scholar 

  81. Venkatachalapathy, M., Belapurkar, V., Jose, M., Gautier, A. & Nair, D. Live cell super resolution imaging by radial fluctuations using fluorogen binding tags. Nanoscale 11, 3626–3632 (2019).

    Google Scholar 

  82. Wang, B. et al. Multicomposite superresolution microscopy: enhanced Airyscan resolution with radial fluctuation and sample expansions. J. Biophoton. 13, e2419 (2020).

    MATH  Google Scholar 

  83. Ehrlich, R. et al. Super-resolution radial fluctuations (SRRF) nanoscopy in the near infrared. Opt. Express 30, 1130–1142 (2022).

    ADS  MATH  Google Scholar 

  84. Gong, X. et al. Achieving increased resolution and reconstructed image quality with intensity and gradient variance reweighted radial fluctuations. ACS Photon. 9, 1700–1708 (2022).

    MATH  Google Scholar 

  85. Solano, A., Lou, J., Scipioni, L., Gratton, E. & Hinde, E. Radial pair correlation of molecular brightness fluctuations maps protein diffusion as a function of oligomeric state within live-cell nuclear architecture. Biophys. J. 121, 2152–2167 (2022).

    ADS  Google Scholar 

  86. Tsutsumi, M., Takahashi, T., Kobayashi, K. & Nemoto, T. Fluorescence radial fluctuation enables two-photon super-resolution microscopy. Front. Cell. Neurosci. 17, 1243633 (2023).

    Google Scholar 

  87. Laine, R. F. et al. High-fidelity 3D live-cell nanoscopy through data-driven enhanced super-resolution radial fluctuation. Nat. Methods 20, 1949–1956 (2023).

    MATH  Google Scholar 

  88. Chen, J. et al. Deep-learning accelerated super-resolution radial fluctuations (SRRF) enables real-time live cell imaging. Opt. Lasers Eng. 172, 107840 (2024).

    MATH  Google Scholar 

  89. Li, Y., Liu, L., Roberts, S. K. & Wang, L. Super-resolution radial fluctuations microscopy for optimal resolution and fidelity. Opt. Lett. 49, 2621–2624 (2024).

    ADS  MATH  Google Scholar 

  90. Shaib, A. H. et al. One-step nanoscale expansion microscopy reveals individual protein shapes. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02431-9 (2024).

Download references

Acknowledgements

N.R. and J.E. acknowledge financial support from the Bundesministerium für Bildung und Forschung (BMBF) of Germany via project NG-FLIM (project no. 13N15327). J.I.G. acknowledges financial support from the European Union’s Horizon 2021 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 101062508 (project name SOADOPP). I.Gligonov acknowledges funding from the International Max Planck Research School for Physics of Biological and Complex Systems and by the European Union via the HORIZON–MSCA–2022–DN ‘Improving BiomEdical diagnosis through LIGHT-based technologies and machine learning—BE-LIGHT’ (grant agreement no. 101119924–BE-LIGHT). J.E. and J.I.G. acknowledge financial support from the DFG through Germany’s Excellence Strategy EXC 2067/1390729940. S.B., O.N., N.R. and J.E. thank the European Research Council (ERC) for financial support via project ‘smMIET’ (grant agreement no. 884488) under the European Union’s Horizon 2020 research and innovation programme.

Author information

Authors and Affiliations

Authors

Contributions

J.E. wrote the manuscript. A.C. and J.E. generated all the figures. S.B., J.I.G., I. Gregor, O.N. and R.T. proofread the final version of the manuscript, and checked the correctness of all citations. N.R. performed the measurements for Fig. 3c. I. Gligonov checked all the theoretical equations in the manuscript.

Corresponding author

Correspondence to Jörg Enderlein.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Mike Heilemann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basak, S., Chizhik, A., Gallea, J.I. et al. Super-resolution optical fluctuation imaging. Nat. Photon. 19, 229–237 (2025). https://doi.org/10.1038/s41566-024-01571-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-024-01571-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing