Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Terabit-scale high-fidelity diamond data storage

Abstract

In the era of digital information, realizing efficient and durable data storage solutions is paramount. Innovations in storage capacity, data throughput, device lifespan and energy consumption are pressing necessities for the continuous progression of practical digital data storage technologies. Here we present a diamond storage medium that exploits fluorescent vacancy centres as robust storage units and provides a high storage density of 14.8 Tbit cm−3, a short write time of 200 fs and an estimated ultralong maintenance-free lifespan on the scale of millions of years. High-speed readout through plane and volume imaging is demonstrated with a high fidelity exceeding 99%, showing that the approach addresses the practical demands of digital data storage and provides a promising solution for future storage requirements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The concept of diamond storage medium.
Fig. 2: Luminescence intensity multiplexing.
Fig. 3: Multi-layer data storage and parallel readout.
Fig. 4: Multi-plane readout and parallel writing.

Similar content being viewed by others

Data availability

The data used to produce the plots within this paper are available via figshare at https://doi.org/10.6084/m9.figshare.26322568 (ref. 59).

Code availability

The necessary code used to produce the plots within this paper are available via figshare at https://doi.org/10.6084/m9.figshare.26322568 (ref. 59).

References

  1. Irie, M., Fukaminato, T., Sasaki, T., Tamai, N. & Kawai, T. A digital fluorescent molecular photoswitch. Nature 420, 759–760 (2002).

    Article  ADS  Google Scholar 

  2. Zijlstra, P., Chon, J. W. M. & Gu, M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459, 410–413 (2009).

    Article  ADS  Google Scholar 

  3. Grotjohann, T. et al. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature 478, 204–208 (2011).

    Article  ADS  Google Scholar 

  4. Goldman, N. et al. Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. Nature 494, 77–80 (2013).

    Article  ADS  Google Scholar 

  5. Lambert, C.-H. et al. All-optical control of ferromagnetic thin films and nanostructures. Science 345, 1337–1340 (2014).

    Article  ADS  Google Scholar 

  6. Shipman, S. L., Nivala, J., Macklis, J. D. & Church, G. M. CRISPR–Cas encoding of a digital movie into the genomes of a population of living bacteria. Nature 547, 345–349 (2017).

    Article  ADS  Google Scholar 

  7. Sun, K. et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass. Science 375, 307–310 (2022).

    Article  ADS  Google Scholar 

  8. Xiong, B. et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise. Science 379, 294–299 (2023).

    Article  ADS  Google Scholar 

  9. Gu, M., Li, X. & Cao, Y. Optical storage arrays: a perspective for future big data storage. Light Sci. Appl. 3, e117 (2014).

    Article  Google Scholar 

  10. Gu, M., Zhang, Q. & Lamon, S. Nanomaterials for optical data storage. Nat. Rev. Mater. 1, 16070 (2016).

    Article  ADS  Google Scholar 

  11. Zhang, J., Gecevičius, M., Beresna, M. & Kazansky, P. G. Seemingly unlimited lifetime data storage in nanostructured glass. Phys. Rev. Lett. 112, 033901 (2014).

    Article  ADS  Google Scholar 

  12. Zhang, Q., Xia, Z., Cheng, Y.-B. & Gu, M. High-capacity optical long data memory based on enhanced Young’s modulus in nanoplasmonic hybrid glass composites. Nat. Commun. 9, 1183 (2018).

    Article  ADS  Google Scholar 

  13. Gao, L., Zhang, Q., Evans, R. A. & Gu, M. 4D ultra-high-density long data storage supported by a solid-state optically active polymeric material with high thermal stability. Adv. Opt. Mater. 9, 2100487 (2021).

    Article  Google Scholar 

  14. Lei, Y. et al. High speed ultrafast laser anisotropic nanostructuring by energy deposition control via near-field enhancement. Optica 8, 1365–1371 (2021).

    Article  ADS  Google Scholar 

  15. Wang, H. et al. 100-layer error-free 5D optical data storage by ultrafast laser nanostructuring in glass. Laser Photon. Rev. 16, 2100563 (2022).

    Article  ADS  Google Scholar 

  16. Wang, Z. et al. 3D imprinting of voxel-level structural colors in lithium niobate crystal. Adv. Mater. 35, 2303256 (2023).

    Article  Google Scholar 

  17. Li, X., Zhang, Q., Chen, X. & Gu, M. Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording. Sci. Rep. 3, 2819 (2013).

    Article  Google Scholar 

  18. Dai, Q. et al. Encoding random hot spots of a volume gold nanorod assembly for ultralow energy memory. Adv. Mater. 29, 1701918 (2017).

    Article  Google Scholar 

  19. Lei, Y. et al. Efficient ultrafast laser writing with elliptical polarization. Light Sci. Appl. 12, 74 (2023).

    Article  ADS  Google Scholar 

  20. Li, X., Cao, Y., Tian, N., Fu, L. & Gu, M. Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate. Optica 2, 567–570 (2015).

    Article  ADS  Google Scholar 

  21. Lee, W. et al. A rewritable optical storage medium of silk proteins using near-field nano-optics. Nat. Nanotechnol. 15, 941–947 (2020).

    Article  ADS  Google Scholar 

  22. Yuan, X. et al. Ultra-high capacity for three-dimensional optical data storage inside transparent fluorescent tape. Opt. Lett. 45, 1535–1538 (2020).

    Article  ADS  Google Scholar 

  23. Lamon, S., Wu, Y., Zhang, Q., Liu, X. & Gu, M. Nanoscale optical writing through upconversion resonance energy transfer. Sci. Adv. 7, eabe2209 (2021).

    Article  ADS  Google Scholar 

  24. Han, F. et al. Three-dimensional nanofabrication via ultrafast laser patterning and kinetically regulated material assembly. Science 378, 1325–1331 (2022).

    Article  ADS  Google Scholar 

  25. Zhao, M. et al. A 3D nanoscale optical disk memory with petabit capacity. Nature 626, 772–778 (2024).

    Article  ADS  Google Scholar 

  26. Sarid, D. & Schechtman, B. H. A roadmap for optical data storage applications. Opt. Photon. News 18, 32–37 (2007).

    Article  ADS  Google Scholar 

  27. Zhang, C. et al. Luminescence modulation of ordered upconversion nanopatterns by a photochromic diarylethene: rewritable optical storage with nondestructive readout. Adv. Mater. 22, 633–637 (2010).

    Article  Google Scholar 

  28. Dhomkar, S., Henshaw, J., Jayakumar, H. & Meriles, C. A. Long-term data storage in diamond. Sci. Adv. 2, e1600911 (2016).

    Article  ADS  Google Scholar 

  29. Aslam, N., Waldherr, G., Neumann, P., Jelezko, F. & Wrachtrup, J. Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection. New J. Phys. 15, 013064 (2013).

    Article  ADS  Google Scholar 

  30. Wolfowicz, G. et al. Optical charge state control of spin defects in 4H-SiC. Nat. Commun. 8, 1876 (2017).

    Article  ADS  Google Scholar 

  31. Lozovoi, A. et al. Optical activation and detection of charge transport between individual colour centres in diamond. Nat. Electron. 4, 717–724 (2021).

    Article  Google Scholar 

  32. Loubser, J. H. N. & Wyk, J. A. V. Electron spin resonance in the study of diamond. Rep. Prog. Phys. 41, 1201–1248 (1978).

    Article  ADS  Google Scholar 

  33. Walker, J. Optical absorption and luminescence in diamond. Rep. Prog. Phys. 42, 1605–1659 (1979).

    Article  ADS  Google Scholar 

  34. Eaton-Magaña, S., Breeding, C. M. & Bassoo, R. Low-temperature annealing and kinetics of radiation stains in natural diamond. Diam. Relat. Mater. 132, 109649 (2023).

    Article  Google Scholar 

  35. Subedi, S., Fedorov, V., Mirov, S. & Markham, M. Spectroscopy of GR1 centers in synthetic diamonds. Opt. Mater. Express 11, 757 (2021).

    Article  ADS  Google Scholar 

  36. Eaton, S. M. et al. Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. Opt. Express 13, 4708–4716 (2005).

    Article  ADS  Google Scholar 

  37. Lin, Z. & Hong, M. Femtosecond laser precision engineering: from micron, submicron, to nanoscale. Ultrafast Sci. 2021, 9783514 (2021).

    Article  ADS  Google Scholar 

  38. Mauclair, C., Mermillod-Blondin, A., Huot, N., Audouard, E. & Stoian, R. Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction. Opt. Express 16, 5481–5492 (2008).

    Article  ADS  Google Scholar 

  39. Jesacher, A., Marshall, G. D., Wilson, T. & Booth, M. J. Adaptive optics for direct laser writing with plasma emission aberration sensing. Opt. Express 18, 656–661 (2010).

    Article  ADS  Google Scholar 

  40. Simmonds, R. D., Salter, P. S., Jesacher, A. & Booth, M. J. Three dimensional laser microfabrication in diamond using a dual adaptive optics system. Opt. Express 19, 24122–24128 (2011).

    Article  ADS  Google Scholar 

  41. Hering, J., Waller, E. H. & Freymann, G. V. Automated aberration correction of arbitrary laser modes in high numerical aperture systems. Opt. Express 24, 28500–28508 (2016).

    Article  ADS  Google Scholar 

  42. Wiecha, P. R., Lecestre, A., Mallet, N. & Larrieu, G. Pushing the limits of optical information storage using deep learning. Nat. Nanotechnol. 14, 237–244 (2019).

    Article  ADS  Google Scholar 

  43. Li, X., Lan, T.-H., Tien, C.-H. & Gu, M. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam. Nat. Commun. 3, 998 (2012).

    Article  ADS  Google Scholar 

  44. Lu, Y. et al. Tunable lifetime multiplexing using luminescent nanocrystals. Nat. Photon. 8, 32–36 (2014).

    Article  ADS  Google Scholar 

  45. Laube, C. et al. Fluorescence lifetime control of nitrogen vacancy centers in nanodiamonds for long-term information storage. ACS Nano 17, 15401–15410 (2023).

    Article  ADS  Google Scholar 

  46. Lagomarsino, S. et al. Photoionization of monocrystalline CVD diamond irradiated with ultrashort intense laser pulse. Phys. Rev. B 93, 085128 (2016).

    Article  ADS  Google Scholar 

  47. Griffiths, B. et al. Microscopic processes during ultra-fast laser generation of Frenkel defects in diamond. Phys. Rev. B 104, 174303 (2021).

    Article  ADS  Google Scholar 

  48. Gray, F. Pulse code communication. US patent 2632058 (1953).

  49. Sakakura, M., Lei, Y., Wang, L., Yu, Y.-H. & Kazansky, P. G. Ultralow-loss geometric phase and polarization shaping by ultrafast laser writing in silica glass. Light Sci. Appl. 9, 15 (2020).

    Article  ADS  Google Scholar 

  50. Khaw, I. et al. Flat-field illumination for quantitative fluorescence imaging. Opt. Express 26, 15276–15288 (2018).

    Article  ADS  Google Scholar 

  51. Zhao, Z., Xin, B., Li, L. & Huang, Z.-L. High-power homogeneous illumination for super-resolution localization microscopy with large field-of-view. Opt. Express 25, 13382–13395 (2017).

    Article  ADS  Google Scholar 

  52. Mau, A., Friedl, K., Leterrier, C., Bourg, N. & Lévêque-Fort, S. Fast widefield scan provides tunable and uniform illumination optimizing super-resolution microscopy on large fields. Nat. Commun. 12, 3077 (2021).

    Article  ADS  Google Scholar 

  53. Descloux, A. et al. Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy. Nat. Photon. 12, 165–172 (2018).

    Article  ADS  Google Scholar 

  54. Scherrer, J. R., Lynch, G. F., Zhang, J. J. & Fee, M. S. An optical design enabling lightweight and large field-of-view head-mounted microscopes. Nat. Methods 20, 546–549 (2023).

    Article  Google Scholar 

  55. Hasegawa, S., Ito, H., Toyoda, H. & Hayasaki, Y. Massively parallel femtosecond laser processing. Opt. Express 24, 18513–18524 (2016).

    Article  ADS  Google Scholar 

  56. Chen, Y.-C. et al. Laser writing of individual nitrogen-vacancy defects in diamond with near-unity yield. Optica 6, 662–667 (2019).

    Article  ADS  Google Scholar 

  57. Kim, S.-W., Takaya, R., Hirano, S. & Kasu, M. Two-inch high-quality (001) diamond heteroepitaxial growth on sapphire (1120) misoriented substrate by step-flow mode. Appl. Phys. Express 14, 115501 (2021).

    Article  ADS  Google Scholar 

  58. Rittweger, E., Wildanger, D. & Hell, S. W. Far-field fluorescence nanoscopy of diamond color centers by ground state depletion. Europhys. Lett. 86, 14001 (2009).

    Article  ADS  Google Scholar 

  59. Zhou, J.-Y. et al. Open data for “Terabit-scale high-fidelity diamond data storage”. figshare https://doi.org/10.6084/m9.figshare.26322568 (2024).

Download references

Acknowledgements

We thank Q. Chen for technical support in the femtosecond direct writing system; D. Liu for help in image denoising; and G. Muratori for granting us permission to use his painting. This work is supported by the National Natural Science Foundation of China (grant numbers T2325023, 92265204, T2125011, 12104446, 12104447, 12274400 and 123B1019), the CAS (GJJSTD20200001), the Innovation Program for Quantum Science and Technology (grant number 2021ZD0302200), the Anhui Initiative in Quantum Information Technologies (grant number AHY050000), and the Fundamental Research Funds for the Central Universities (grant number WK3540000010).

Author information

Authors and Affiliations

Authors

Contributions

J.D., Y.W. and K.X. supervised the project. Y.W. and K.X. conceived the idea. Y.W., K.X. and J.Z. designed the experiment. J.Z. performed the data-writing experiments. J.Z., J.S., J.G., Y.Y. and K.X. performed the data-reading experiments. J.Z. and W.J. analysed the data. M.W. prepared the sample. Y.W., K.X., J.Z., W.J., J.S., F.S. and J.D. wrote the paper. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Kangwei Xia, Ya Wang or Jiangfeng Du.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Carlos A. Rios Ocampo, Ye Zhou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12 and Table 1.

Supplementary Video 1

Data restored from a diamond storage medium of The Horse in Motion (the first film in the world; Eadweard Muybridge, 1887).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Su, J., Guan, J. et al. Terabit-scale high-fidelity diamond data storage. Nat. Photon. 18, 1327–1334 (2024). https://doi.org/10.1038/s41566-024-01573-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41566-024-01573-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing